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Abstract 
The transition towards sustainable energy sources requires the development of cost-
effective and highly efficient electrocatalysts for water electrolysis. This study reports the 
fabrication and optimization of a non-precious bifunctional quaternary electrocatalyst from 
Co-Fe-Mn-Ni (CFMN) via electrodeposition for water-splitting reactions of both hydrogen 
(HER) and oxygen evolution (OER) reactions. Physicochemical characterizations showed 
that optimized quaternary CFMN electrocatalyst, deposited from an acetate electrolyte, had 
a composition of Co1.54-Fe0.11-Mn0.01-Ni0.043, with polycrystalline nanosheet morphology. 
Electrochemical activity assessment revealed remarkable electrocatalytic performance for 
both HER and OER, surpassing that of single-metal catalysts. CFMN electrocatalyst 
displayed an overpotential () of 110 and 310 mV, with current density values of  8.3 x 
10-4 and 4.5 x 10-2 A/cm-2, for HER and OER, respectively. Moreover, the catalyst 
exhibited excellent stability, retaining over 86.3% of its initial current density during 4000 s 
of chronoamperometric testing and showing negligible performance degradation after 1000 
continuous linear sweep voltammetry cycles. This study aims to contribute to the 
advancement of multi-element, efficient and cost-effective electrocatalysts for water-
splitting reactions and hydrogen fuel production.  
 
Keywords: Acetate bath; bifunctional catalysts; Co-Ni-Mn-Fe electrocatalyst; fabrication; 
Hydrogen evolution reaction; Oxygen evolution reaction; renewable energy. 
 

 
 
Introduction 
It has been challenging to use aqueous electrolytes to electrodeposit transition 
metals, due to high overpotential, which leads to a rapid competing hydrogen 

 
 The abbreviations and symbols definition lists are in pages 378-79. 
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evolution reaction (HER) at the cathode [1]. This often results in thin, brittle, and 
uneven deposits with low current efficiencies. Despite this, there have been 
successful observations of metallic Mo being deposited using concentrated acetate-
based aqueous electrolytes. This allows for the creation of Mo coatings at 
temperatures close to room temperature and neutral pH, without the need for 
expensive conditions or reagents [1]. Furthermore, [2] has noted successful 
formation of Zn-Ni binary alloys on steel substrates using an acetate-based bath. By 
controlling pH within a specific range, the authors have suggested that each metal 
was independently deposited through two successive one-electron transfer steps. 
However, contrary to expectations, co-deposits rich in Zn were consistently 
obtained. It was found that, at low current densities (< 0.7 A/cm2), the coating had a 
porous layer of nodular, randomly orientated grains. With higher current densities, 
the formation of more uniform coatings with smaller, smoother and more compact 
grains was observed. Additionally, using an acetate bath offers the advantage of 
producing high-quality, bright deposits with improved cathode efficiency and more 
cost-effective waste treatment. 
Hydrogen is regarded as the most promising renewable and sustainable energy 
source, due to its abundant, high energy density (140 MJ kg-1) and long-term 
sustainability as ultimate zero-emission energy source [3-9]. However, only about 
7% of global hydrogen production is obtained by sustainable water electrolysis, 
which theoretically presents a simplistic, economical and effective approach for 
production of pure oxygen and hydrogen without generating any pollutants [10-13].  
However, in water electrochemical splitting in alkaline media, kinetics of both 
oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) are slow 
and require high overpotential to proceed [14-16]. Thus, it is imperative to develop 
an intrinsic electrocatalyst with high electrocatalytic activity. Currently, although 
most suitable electrocatalysts for HER and OER are noble metal-based materials 
such as Pt, Ru or Ir, respectively, they are restricted in large-scale applications, due 
to their high cost and limited availability [17-20]. To address these challenges, it is 
imperative to develop bifunctional noble metal-free electrocatalysts that have unique 
properties and high activity towards both HER and OER in alkaline electrolytes [21-
24]. Therefore, various bifunctional catalysts based on transition metals show 
promise for water splitting, including metal carbides [25, 26], nitrides [27, 28] 
phosphates [29-33] and sulphides [34, 35], owing to their unique surface structures 
and functionality. Thus, numerous strategies have been employed to design 
electrocatalysts and develop their surface electronic structure and functionality with 
more active sites to enhance their catalytic performance. For example, Ni-Fe alloys 
have been considered promising candidates for water splitting, due to their 
impressive catalytic activity, affordability and high abundance [36].  Incorporating 
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Fe into a binary Ni-Co alloy spine-type oxide and modifying its electronic structure 
to achieve excellent HER catalytic activity has been proposed by [37]. In a related 
study, a mesoporous ternary CoFeNi oxide (CoFeNi-O) electrocatalyst prepared via 
a dealloying process revealed enhanced water electrocatalytic splitting activity and 
very low overpotentials of 200 and 57.9 mV for OER and HER, respectively. 
Additionally, a cell overpotential gap of 1.56 V was enough to drive water-splitting 
reactions at 10 mA/cm2 [38]. Moreover, [39] has prepared a Ni-Fe-P electrode with 
intrinsic catalytic activity towards HER in 0.5 M H2SO4. Trimetallic NiFeMo 
electrocatalysts have shown a 1.45 V overall water splitting potential at 10 mA/cm2, 
as a result of low overpotentials and Tafel slopes for HER and OER [40]. This 
electrocatalytic activity enhancement was attributed to the incorporation of high- 
valence metals (e. g. V, Cr and/or Mn) into Fe-Co-Ni electrocatalysts, which 
induced surface reconstruction, defects and vacancies that significantly improved 
water-splitting reactions [41, 42]. Particularly, the use of Mn, among other abundant 
earth metals, can tailor the electronic structure and improve catalytic activity. In this 
regard, [43] has proposed that Ni-Fe-Mn has impressive catalytic performance and 
durability towards OER. Very recent work has shown that a quaternary alloy system 
such as Cu–Ni–Co–Fe exhibits excellent high hydrogen storage and high stability 
with minimal structure degradation [44]. This system also displays superiority 
during long-term water electrolysis. Also, it was established that NiFeCrCo LDH 
(Layered Double Hydroxide) alloy enhances the performance of OER and HER, 
which provides a new perspective on utilizing entropy effects in LDH as high-
performance overall water electrolysis catalysts [45]. The importance of abundant 
earth metals and the need for improving an electrode consisting of low-priced and 
abundant metals inspired the authors of the present study to propose a quaternary 
alloy consisting of four abundant and available metals, such as Co, Fe, Mn and Ni 
(CFMN), for overall water splitting reactions [46]. The advantages of ternary and 
quaternary electrocatalysts are that they not only preserve intrinsic properties of 
component elements but also generate new interfaces and create defects, active sites 
and vacancies due to lattice distortion. Consequently, it modifies the electronic 
structure, accelerates electron and proton transfer, and moderates reactants’ and 
intermediates adsorption energy at the catalyst surface [42-47]. Herein, two goals 
have been set: to use a one-step electrodeposition strategy to prepare an electrode of 
a single metal component and demonstrate its catalytic behaviour towards HER and 
OER; and to synthesize a quaternary electrocatalyst of Co, Fe, Mn and Ni (CFMN), 
studying its catalytic activity towards HER and OER. Additionally, a comparative 
evaluation of the electrochemical activity of the single quaternary (CFMN) 
electrocatalysts towards HER and OER was conducted, analysing their morphology, 
compositions, structures and kinetics. 
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Materials and methods 
Reagents and preparations 
High-purity chemicals (99%), including nickel chloride hexahydrate (NiCl2.6H2O), 
cobalt chloride hexahydrate (CoCl2.6H2O), ferric chloride (FeCl3), manganese 
chloride (MnCl2.4H2O), sodium acetate trihydrate (CH3COONa.3H2O), acetic acid 
(CH3COOH) and potassium hydroxide (KOH) were obtained from Sigma-Aldrich. 
These chemicals were used without further purification. Milli-Q ultrapure water 
purification system was used to obtain deionized water that was used to prepare 
solutions in all experiments. 
 
Electrodeposition of Co, Fe, Mn, Ni and CoFeMnNi (CFMN) electrocatalysts 
Electrodeposition of Co, Fe, Mn, Ni and quaternary CFMN electrocatalysts was 
performed using a 25 mL glass cell with a three-electrode configuration. 
Electrodeposition of individual metals (Co, Fe, Mn, and Ni) on a graphite electrode 
(3 mm diameter) was achieved from the metal salt dissolved in an acetate buffer 
solution at pH 4.6. An acetate buffer solution comprising 0.2 M sodium acetate and 
0.2 M acetic acid was typically prepared and adjusted to the desired pH of 4.6 using 
0.1 M NaOH, while metal salts were dissolved in the electrolyte at a concentration 
of 0.4 M for electrodeposition of each metal. The solution used to fabricate 
quaternary CFMN electrocatalyst was prepared by mixing 0.25 M CoCl2.6H2O, 0.05 
M FeCl3, 0.1 M MnCl2.4H2O and 0.15 M NiCl2.6H2O (corresponding to a molar 
ratio of 5:1:2:3) in a 0.4 M acetate buffer solution at a pH of 4.6. Cyclic 
voltammetry was first performed to determine the appropriate deposition potential at 
1.15, 1.25, 1.43, 1.1 and 1.15 V vs. Ag/AgCl for Co, Fe, Mn, Ni and 
quaternary CFMN electrocatalysts, respectively. 
 
Physicochemical and electrochemical characterizations 
Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analyses 
were performed for electrocatalysts using SEM JEOL, JSM IT-100, with a 
maximum magnification of 300,000 x, maximum resolution of 3 nm and a 
maximum acceleration voltage of 30 kV. Transmission electron microscopy (TEM) 
was performed using TEM JEOL, JEM-200, with a maximum magnification of 1.5 
million x. X-ray diffraction (XRD) patterns were recorded using Shimadzu XRD 
6000, x-ray diffractometer Cu Kα1 (wavelength = 1.5418 A0). Electrodeposition 
process and electrochemical characterizations were performed using a computer-
controlled potentiostat/galvanostat model 273 A, from Princeton Applied Research, 
Oak Ridge, TN, USA, with 270/250-PAR software. Before each deposition process, 
the graphite working electrode (diameter 2.0 mm) was cleaned with concentrated 
hydrochloric acid to remove any oxides or impurities attached to the surface, 
cleaned with polishing paper grade 100, and then rinsed thoroughly with distilled 
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water. Electrochemical performance of electrodeposited electrodes was studied in a 
standard three-electrode system, with fabricated electrocatalysts used as working 
electrodes, and Ag/AgCl (3 M KCl) and Pt wire used as reference and counter 
electrodes, respectively. Linear sweep voltammetry (LSV) measurements were 
performed to study HER and OER in a 1.0 M KOH solution. All potential data or 
overpotentials for the fabricated electrodes were referred to as reversible hydrogen 
electrode (RHE). 
 
Results and discussion 
Characterisation of the Co, Ni, Mn, Fe and quaternary CFMN electrocatalysts 
Surface morphology of Co, Ni, Mn, Fe and quaternary CFMN electrocatalysts was 
examined using SEM, and images are presented in Fig. 1 (a-e. Deposited Co film 
showed a uniform distribution in the form of rosette-flower-like nanoparticles, as 
shown in Fig. 1a.  
 

 
Figure 1: SEM images of a) Co, b) Fe, c) Mn, d) Ni, and e) CoFeMnNi deposits. 

 

SEM image of Fe electrocatalyst in Fig. 1b showed a random distribution with 
cubic-shaped crystals that failed to cover the whole graphite surface, indicating 
difficulty in electrodeposition. Deposited Mn film provided surface coverage and 
formed small fibrous aggregates (Fig. 1c), while Ni deposit appeared in a 
cauliflower structure with uniform distribution (Fig. 1d). In contrast, SEM image of 
deposited quaternary CFMN electrocatalyst displays a uniformly distributed, 
compact and dense surface with a bubble shape, as shown in Fig. 1e. It was 
established that several mechanisms have been proposed to illustrate anomalous co-
deposition phenomenon, including Matlosz model, which shows that reduction of 



Ibrahim S. El-Hallag et al. / Portugaliae Electrochimica Acta 45 (2027) 367-384 

372 

Fe2+ and Ni2+ takes place via two steps, and that from Fe3+ via three steps, as shown 
in Eqs. (1) and (2), respectively [48-50]. Reduction of Ni or Fe ions occurs through 
multiple steps, as shown in Eqs. (1-5), and reduction rate of Fe+

ads is higher than that 
of Ni+

ads. This results in a higher proportion of Fe+
ads coverage on the surface, which 

inhibits further reduction of Ni+
ads ions [51-52].  

In the case of Fe2+ or Ni2+ ions: 
 
 𝑀ାଶ + 𝑒ି → 𝑀௔ௗ௦

ା   (1) 
 
 𝑀௔ௗ௦

ା + 𝑒ି → 𝑀  (2) 
 
In the case of Fe3+ ions: 
 
 𝐹𝑒ାଷ + 𝑒ି → 𝐹𝑒௔ௗ௦

ାଶ  (3) 
 
 𝐹𝑒௔ௗ௦

ାଶ + 𝑒ି → 𝐹𝑒௔ௗ௦
ା   (4) 

 
 𝐹𝑒௔ௗ௦

ା + 𝑒ି → 𝐹𝑒  (5) 
 
Moreover, the internal structure of the quaternary CFMN electrocatalyst was further 
investigated using TEM analysis. Fig. 2 presents TEM images of a thick (a) and thin 
(b) layer of deposited CFMN film that had been scratched from graphite substrate.  
 

 
Figure 2: TEM images of deposited quaternary CFMN electrocatalyst- (a) with thick and 
uneven edges and (b) with a thin polycrystalline film. 
 

TEM image in Fig. 2a shows formation of thick deposits with unevenly thin edges, 
while in Fig. 2b it provides conclusive evidence of formation of very thin nanosheets 
of polycrystalline CFMN electrocatalysts. Moreover, TEM analysis also revealed 
presence of small crystallites with sizes ranging from a few to tens of nanometers 
attributed to the various alloying elements. Formation of these small crystallites 
suggests that the fabrication process involved heterogeneous nucleation and growth 
mechanisms, consistent with previous studies on nanocrystalline alloys [48, 49]. Fig. 
3 shows XRD patterns of Co, Fe, Mn, Ni and quaternary CFMN electrocatalysts.  
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Figure 3: (a) XRD spectra of deposited Fe, Mn and Ni films; (b) XRD spectra of deposited 
Co and CNMF alloys; inset graph relates to XRD spectrum of bare PGE substrate. 
 

XRD of Fe, Mn and Ni deposits (Fig. 3a) shows a high-intensity peak at 2θ value = 26°, 
due to graphite substrate. Deposited Fe nanoparticles showed three main diffraction 
peaks (Fig. 4a) for body-centered cubic phase (BCC) at 2θ values of 44.3°, 62.2°. and 
78.4°, corresponding to diffraction planes (110), (200) and (211), respectively (JCPDS 
card No. 01-085-1410). Average crystallite size of deposited Fe nanoparticles, 
calculated from Scherrer equation, was 39 ± 2 nm. Deposited Ni (Fig. 3a) showed three 
diffraction peaks at 2θ values of 43.8°, 44.4° and 52.2°, corresponding to diffraction 
planes (111), (111) and (200), respectively (JCPDS card No. 041-0850). Deposited Mn 
nanoparticles showed main diffraction peak at 2θ = 43.8° and smaller intensity 
diffraction peaks at 2θ values of 44.7°, 54.8° and 77.8°, matching diffraction planes of 
(310), (321) and (510), respectively (JCPDS card No.00-003-1014). Average size of 
Mn was 26.5 ± 2 nm. Moreover, XRD of deposited Co nanoparticles in Fig. 3b showed 
two main diffraction peaks with high intensity at 2θ values of 41.4° and 44.2°, 
corresponding to diffraction planes (100) of hexagonal closed-packed (HCP) and face-
centred cubic (FCC) phases, respectively (JCPDS card No. 01-089-4308). Average 
crystallite size of deposited Co nanoparticles was 24.8 ± 2 nm. In the case of deposited 
quaternary CFMN electrocatalyst, XRD pattern in Fig. 3b revealed three peaks, the first 
at 2θ = 44.2°, with high intensity attributed to (111) diffraction plane of FCC phase. 
The other two peaks at 2θ = 52.2° and 76° correspond to (200) and (220) diffraction 
planes, respectively, related to orientations of pure FCC Ni and Co (JCPDS No. 70-
1849). Absence of diffraction peaks for Mn and Fe suggests formation of a solid 
solution due to substitution of Ni or Co atoms by Mn and Fe atoms, leading to a highly 
enriched Ni cubic FCC structure with substituted atoms. Average crystallite size of 
deposited quaternary CFMN electrocatalyst was 21.2 ± 2 nm.  
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Electrocatalytic water splitting 
Comparative electrocatalytic HER activity 
Electrodeposition process of Co, Fe, Mn, Ni and quaternary CFMN electrocatalysts 
was optimized based on their electrocatalytic efficiency towards HER. Fig. 4(a) shows 
polarization curves of LSV for HER in 1.0 M KOH, at a scan rate of 5.0 mV/s, at 
298K, using Co, Fe, Mn, Ni and quaternary CFMN electrocatalysts deposited from an 
acetate bath. As shown in Table 1, deposited metals of Fe, Ni, Co and Mn electrodes 
exhibited an overpotential (η) of 264 ± 4, 194 ± 4, 164 ± ,4, and 134 ± 4 mV for 
HER, to produce a current density of 10 mA/cm2, respectively. In contrast, deposited 
quaternary CFMN electrocatalysts exhibited least negative overpotential value of 
110 ± 4 mV, indicating their higher catalytic activity for HER. 
 

 

 
Figure 4: (a) LSV at 5.0 mV/s recorded during HER in 1.0 M KOH with Co, Fe, Mn and Ni 
and quaternary CFMN electrocatalyst deposited from acetate buffer at -1.15 V for 4000 s; (b) 
Tafel plots; (c) chronoamperometry curve of CFMN at 0.10 V vs. RHE and 298 K; and (d) 
polarization curves at CFMN in 1.0 M KOH after the first and 1000 cycles. 
 

Fig. 4(b) presents corresponding HER Tafel plots of polarization curves from Co, 
Fe, Mn, Ni and quaternary CFMN electrocatalysts. Tafel slope is a parameter that 
provides information about rate-limiting step of electrocatalytic reaction. Quaternary 
CFMN electrocatalyst exhibited a Tafel slope of 124 ± 4 mV/dec, indicating a faster 
reaction rate compared to the one from deposited Fe nanoparticles, which exhibited 
a Tafel slope of 179 ± 4 mV dec-1. 
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Observed differences in Tafel slopes from deposited metals and quaternary CFMN 
electrocatalysts highlight the importance of composition and morphology of 
electrocatalysts in determining its electrocatalytic activity towards HER. Reaction 
mechanism of HER in the alkaline solution and rate-determining step can be 
determined using Tafel analysis following reported literature [50]. 
Electrochemical kinetic parameters of jo, b,  and  were determined from Tafel 
Eqs. (4-6) [45], and cited in Table 1 for deposited Co, Fe, Mn, N and quaternary 
CFMN electrocatalysts from acetate bath. As shown in Fig. 4b, fabricated electrodes 
of quaternary CFMN electrocatalysts have smallest Tafel slope of 124 ± 4 mV/dec. 
Further, they have least negative value for overpotential and highest j0 and α, which 
reveals their higher catalytic activity towards HER compared to the individual metal, 
and the reaction follows Volmer-Heyrovsky mechanism. 
 

Table 1: Kinetic parameters of fabricated Ni, Co, Mn and Fe and their quaternary CFMN 
electrocatalysts from an acetate bath for HER in 1.0 M KOH at 298 K. 

Catalysts Co Fe  Mn Ni  Quaternary CFMN 

η10 (mV) 164 264  134 194  110 
b (mV/dec) 144 179  147 146  124 
jₒ (A cm-2) 8.0*10-4 3.68*10-4  7.3*10-4 7.8*10-4  8.3*10-4 

Α α 0.20  0.08  0.20 0.22  0.23 

 

Furthermore, Fig. 4c shows chronoamperometry of HER stability from quaternary 
CFMN electrocatalyst in 1.0 M KOH, at a constant potential of 0.10 V vs. RHE and 
298 K. CFMN electrocatalyst shows excellent stability as current is retained at up to 
86.3 % of its initial value after 4000 s of electrolysis. Fig. 4d shows LSV for HER, 
at a scan rate of 5.0 mV/s, after cycles 1 and 1000. It can be seen that HER’s onset 
potential drops from 80 to 110 mV after 1000 cycles, which means quaternary 
CFMN electrocatalyst from acetate for HER is stable, but it has low durability, 
which needs to be improved. HER of CFMN electrocatalyst is compared with other 
materials from literature, and cited in Table 2.  
 

Table 2: Comparison of HER activity and overpotential values from quaternary CFMN 
electrocatalysts with different catalysts reported in literature. 

Catalyst Medium η10 (mV) Reference 
NiCo2S4 NW/NF arrays 1.0M KOH -210 [53] 
3D porous NF@G@Ni3S2 with a 1.0M KOH 119 [54] 
CoNi-OOH-30(40) 1.0M KOH -210 [55] 
porous carbon spheres - doped Ni, Co - alloy 0.5M H2SO4 240 [56] 
Fe (Ni/Co) hydroxy phosphate 1.0M KOH 145 [57] 
quaternary CFMN electrocatalyst 1.0M KOH -110 This work 
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Quaternary CFMN electrocatalyst had highest catalytic activity and least negative 
overpotential value of 110 ± 4 mV compared to other materials containing ternary 
or binary bifunctional catalysts. 
 
Comparative electrocatalytic OER activity 
Fig. 5a presents polarization curves (LSV) at 5 mV/s at 298 K for OER for deposited 
Co, Ni, Mn, Fe, and quaternary CFMN electrocatalysts in a 1.0 M KOH solution. As 
shown, OER onset potential required to produce a current density of 10 mA/cm2 is 
decreased in following order: Fe (1.76 mV) > Mn (1.71 mV) > Ni (1.62 mV) > Co 
(1.59 mV). At a current density of 27 mA/cm2 and overpotential of 1.68 V, LSV from 
quaternary CFMN precedes LSV from Fe, Mn, Ni and Co. This behavior indicates 
and confirms that quaternary CFMN alloy provides higher electrocatalytic properties 
than individual Fe, Mn, Ni and Co metals. 
 

 

 
Figure 5: (a) LSV of 1.0 M KOH, at a scan rate of 5.0 mV/s, for OER, by Co, Fe, Mn, Ni, 
and their CFMN from acetate buffer with pH 4.6 at 1.15 V for 900 s; (b) Tafel plots of LSV 
for OER; (c) chronoamperometry current-time curve for deposited CFMN at 1.68 V vs. RHE 
for 12000 s; and (d) polarization curves for OER in 1.0 M KOH after 1 and 1000 cycles. 
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Quaternary CFMN electrode exhibits smallest onset potential of 1.54 mV vs. RHE, 
which suggests that it had higher catalytic activity towards OER among the studied 
electrodes in an alkaline solution. Fig. 5b shows corresponding Tafel plots of 
studied electrodes for OER. Quaternary CFMN electrode has the lowest Tafel slope 
value of 98.5 ± 4 mV/dec, which confirms superior activity of CFMN electrocatalyst 
compared to individual elements of Co, Fe, Mn and Ni. 
Table 3 reports OER electrochemical kinetics parameters of overpotential (η10 = 
experimental values of potential at 10 mA/cm2 –thermodynamics value of OER, which 
equals 1.23 V vs. RHE), Tafel slope,  coefficient, and exchange current density (jo) 
values of studied electrocatalysts. As has been shown in Table 3, fabricated quaternary 
CFMN electrode has lowest Tafel slope of 98.5 ± 4 mV/dec, and least positive values 
for onset potential and overpotential (η10) values of 1.54 ± 0.002 V and 310 ± 4 mV, 
respectively. Additionally, it has highest jo and α, which reveals its higher catalytic 
activity towards OER, and indicates that the reaction follows Volmer-Heyrovsky 
reaction. Also, quaternary CFMN has higher catalytic activity for OER than that when 
using the single metal. 
 

Table 3: Kinetic parameters of fabricated Co, Fe, Mn, Ni, and their quaternary CFMN 
electrocatalysts from an acetate bath for OER in 1.0 M KOH at 298 K. 

Catalysts Co Fe Mn Ni Quaternary CFMN 
Onset potential (mV) vs. RHE 1.59 1.76 1.71 1.62 1.54 
η10 (mV) 360 530 480 390 310 
b (mV/dec) 182.7 138.5 138.8 129 98.5 
jₒ (A/cm2) 9.5*10-3 13.6*10-2 13.6*10-2 12.6*10-2 45*10-2 

α 0.17 0.21 0.21 0.23 0.29 

 

Furthermore, durability and stability of quaternary CFMN electrocatalyst for OER 
were investigated in 1.0 M KOH via chronoamperometry, for 3 h, at a constant 
potential of 1.58 ± 0.002 V vs. RHE and after 1000 cycles. As shown in Fig. 6c, 
quaternary CFMN electrode exhibited good stability, with current being retained at 
67.6% of its initial value. Moreover, Fig. 6d shows LSV of quaternary CFMN 
electrocatalyst durability for OER after 1 cycle and 1000 cycles, which reveals onset 
potential, and that current density remained constant after 1000 cycles. This 
confirms that fabricated CFMN electrocatalyst from acetate has excellent durability 
and stability for OER.  
Table 4 reports OER activity and results of fabricated quaternary CFMN 
electrocatalyst as compared with state-of-the-art electrocatalysts reported in 
literature. 
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Table 4: Comparison of overpotential values for different catalysts for OER. 
Catalyst Medium η10 (mV) Ref. 
Ni Fe Al O with metal vacancies 1.0 M NaOH 371 [58] 
N-Ni3S2 1.0 M KOH 330 [59] 
Fe Doped NiP 1.0 M KOH 270 @20 mA cm-2 [60] 
Fe Doped Ni(OH)2/Ni Foam 1.0 M KOH 271 @20 mA cm-2 [61] 
Ni-Mn-Fe-Mo alloy 1.0 M KOH 570@1000 mA cm-2 [62] 
Ni-Fe-W-Mo alloy 1.0 M KOH 152 [63] 
Co-Ni-Mn-Fe alloy 1.0  M KOH 310 This work 

 

Conclusions 
Development of electrocatalysts exhibiting robust catalytic activity in both HER and 
OER reactions is a critical requirement for advancing sustainable energy 
technologies. Non-precious bifunctional quaternary electrocatalysts from CFMN for 
water-splitting HER and OER have been usefully electrodeposited from acetate 
solutions. Physicochemical characterisation obtained from SEM, XRD and TEM 
analyses provides valuable insights into surface morphology, elemental composition 
and internal structure of quaternary CFMN electrocatalyst. Notably, electrodeposited 
quaternary CFMN electrocatalyst demonstrated highest catalytic activity, excellent 
stability, and a smaller Tafel slope for both HER and OER compared to single 
deposited Co, Fe, Mn and Ni electrodes. Findings can be useful in electrodeposition 
of multi-element electrocatalysts with desired morphologies and properties for 
efficient and long-lasting bifunctional electrocatalysts for energy conversion and 
storage applications. 
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Ag/AgCl: silver-silver chloride electrode  
BCC: body-centred cubic 
CFMN: cobalt-iron-manganese-nickel (Co-Fe-Mn-Ni) 
CH3COOH: acetic acid 
CH3COONa.3H2O: sodium acetate trihydrate 
CoCl2.6H2O: cobalt chloride hexahydrate 
EDX: energy dispersive X-ray 
FCC: face-centred cubic 
FeCl3: ferric chloride  
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H2SO4: sulphuric acid 
HCP: hexagonal closed-packed 
HER: Hydrogen evolution reaction 
KOH: potassium hydroxide 
LSV: linear sweep voltammetry 
MnCl2.4H2O: manganese chloride 
NaOH: sodium hydroxide 
NiCl2.6H2O: nickel chloride hexahydrate 
OER: Oxygen evolution reaction 
RHE: reversible hydrogen electrode 
SEM: scanning electron microscopy 
TEM: transmission electron microscopy 
XRD: x-ray diffraction 
 
Symbols 
α: transfer coefficient  
j: current density 
jo: exchange current density 
η: overpotential 
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