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Abstract 
Numerous developed nations have adopted a bio-based economy, with thermochemical 
conversion of municipal solid waste biomass (Bm) being the most effective method to 
accomplish this objective. Hydrothermal carbonization (HTC) presents a viable method for 
conversion of waste Bm through an environmentally sustainable process that utilizes water 
as reaction medium and operates at moderate temperatures (180-280 °C). HTC has 
effectively generated targeted carbonaceous products from diverse waste sources, including 
lignocellulosic Bm, sewage effluent, algae and municipal solid waste. This study examines 
critical HTC process parameters and chemical and physical properties of resultant 
hydrochar, while exploring potential conversion of modified and functionalized materials 
into sustainable solutions for the future. 
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Introduction 
Human activities have resulted in proliferation of waste biomass (Bm) over time. 
Composting or disposing of waste Bm in open landfills can adversely affect 
environment, finances and public health. Although historically seen as waste, Bm is 
a valuable sustainable resource that also functions as energy source, demonstrating 
environmental friendliness [1]. Certain initiatives aim to enhance crude oil 
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production and replenish reservoirs, while others utilize greenhouse gas emissions 
for energy generation [2]. Waste Bm is progressively regarded as a renewable 
resource capable of mitigating greenhouse gas emissions [3]. Nonetheless, features 
such as its low energy potential and equilibrium, elevated ash content, hygroscopic 
biological characteristics, storage challenges and emissions produced post-
combustion restrict its application. Thermochemical conversion of Bm into useful 
compounds has advanced considerably [4]. Heat-based technologies transform 
cellulose into biofuels, adsorbents and important chemicals, including bio-oil 
generated from alkaline compounds such as phenolic ketones, acids and furan 
derivatives [5]. Various techniques for carbonizing Bm have been established, 
including combustion, torrification, gasification by pyrolysis and hydrothermal 
carbonization (HTC) treatment. HTC is an effective Bm utilization technique that 
significantly contributes to waste treatment and solid biofuel production, being cost-
effective and environmentally friendly. It functions at moderate temperatures (180-
280 ºC), employing groundwater as reaction medium. 
Raw materials undergo through hydrolysis, dehydration, decarboxylation, 
aromatization and condensation during HTC process, which is predominantly 
regulated by temperature and residence time (RT), affecting the structure and 
qualities of the result [6]. HTC has multiple advantages, such as capacity to 
carbonize liquid Bm prior to drying, and to diminish gas emissions resulting from 
oxide dissolution in processing water [7-9]. This economical and environmentally 
sustainable approach operates at moderate temperatures (180-280 °C), and utilizes 
water as catalytic medium, which serves as low-cost solvent and Bm ingredient, 
while being ecologically benign and non-toxic. Subcritical water functions as non-
polar solvent under HTC conditions, promoting hydrolysis of organic matter 
molecules in Bm, and leading to rapid depolymerization into water-soluble 
compounds [10]. Reduced HTC temperature produces functionalized hydrochar 
(HC) suitable for pollution adsorption, whilst elevated temperatures generate HC 
with enhanced fuel characteristics. Duration of reaction exerts a comparable yet less 
pronounced effect on HTC’s sensitivity. Extended reaction durations for 
hydrocarbon production give diminished outputs, but enhance aromatic complexity 
[11]. Carbonization and canonization in an aqueous environment generate 
oxygenated functional groups on solid hydrocarbon surfaces and HC [12, 13].  
The method produces high-energy, coal-like hydrocarbons without gas emissions or 
necessity for feedstock desiccation. HTC offers advantages over conventional 
thermal treatments, including reduced costs and energy consumption, along with 
enhanced application diversity [14]. Derived solid residues exhibit significant 
hydrophobicity and reliability, facilitating its separation from liquids. Research 
demonstrates that it exceeds raw Bm in power and mass density, biodegradability 
and combustion efficiency as a stable fuel [15]. 
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HC has multiple applications, including carbon sequestration, soil augmentation, 
bioenergy production and wastewater pollution remediation. Processing water is 
generated concurrently with solid HC. It may include hazardous chemical 
compounds and present an environmental danger, as the presence of dissolved 
organic matter could hinder efficient production of HC from Bm, representing a 
significant constraint on HTC process. Consequently, further treatment is necessary 
prior to the release of processing water into the environment. To surmount this 
obstacle, it is advisable to utilize obtained chemicals or recirculate process water to 
diminish water consumption during HTC [16]. This review study elucidates the 
influence of HTC variables on HC structure and properties, focusing on biological 
Bm conversion, sustainable manufacturing and potential applications for resultant 
materials. It underscores the significance of generating carbonaceous materials 
sustainably and ecologically [17]. 
 
Impact of procedural elements 
Hydrocarbons produced from  the same feedstock may exhibit varying physical and 
chemical properties based on operational parameters. Comprehending the influence 
of each aspect is essential for optimizing HTC processes and generating superior 
HC. Properties of HC are influenced by various factors, including kind and quantity 
of feedstock, pressure, catalyst presence, as well as primary temperature and room 
temperature. [18]. 
 
Thermal measurement 
Temperature is a crucial determinant in defining the structure and characteristics of 
final products, affecting ionic and radical processes in supercritical water, as well as 
the extent of precursor decomposition and transformation in the energy source. 
Temperature variations and quantity of potentially transformed molecules 
significantly influence decomposition process [19]. Breakdown of lignocellulosic 
Bm commences at 180 °C. Extended reaction durations and elevated temperatures 
result in more vigorous Bm transformation reactions. Increased carbonization 
temperatures give more carbon-rich hydrocarbons; however, they significantly 
reduce solid-phase yield due to degradation [20]. Additionally, high temperatures 
accelerate dehydration and decarboxylation processes, leading to a decrease in 
oxygen concentration and modifications in both oxygen-to-carbon and hydrogen-to-
carbon atomic ratios in cellulose. The process produces HC with enhanced fuel 
properties, particularly when variations occur in higher and lower heating values 
(HHV and LHV) [21]. Numerous studies have examined the impact of this method's 
component. As deterioration occurs across diverse climates, each bioenergy 
component is affected differently by HTC. Plant matter precursors are generally 
transformed into solid hydrocarbons at temperatures from 180 to 280 ºC. In 
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selecting Bm, it is important to consider carbonization and temperature. Elevated 
process temperatures led to Bm degradation, which results in diminished HC 
generation, volatile matter, and O content, while increasing its fixed carbon content 
(FCC) and heat equilibrium [22]. Inorganic components at outset significantly affect 
product´s qualities. Thermal treatment over 180 ºC eliminates inorganic compounds 
from Bm. Additional research has demonstrated that HTC treatment of municipal 
solid waste food at temperatures from 180 to260 ºC can yield renewable energy 
[23]. At 260 ºC, HHV produced highest overall fluid catalytic cracking yield, but 
lowest mass production. Peak rate of consistent biofuel production was achieved at 
180 °C. Experts have concluded that 225 °C is the most reliable temperature for a 
specific energy supply. Other researchers have obtained similar findings about the 
influence of temperature on hydrocarbon characteristics, such as energy potential, 
porosity and re-adsorption capacity of grape pomace and Miscanthus x giganteus 
HC, while concurrently reducing volatiles, ashes and moisture content [24].  
Dissolution of organic matter has been assessed in HC produced from cow dung, 
maize stalk and Myriophyllum aquaticum at three specific temperatures (180, 200, 
and 220 °C). Researchers found that elevating HTC temperature reduced dissolved 
organic carbon content from HC, enhanced aromatic content and transpiration of 
cow dung HC, and affected dissolved organic matter [25]. Nonetheless, it adversely 
affected cornstalk and HC. 
 
Elevated pressure 
Tension is generated during HTC management, primarily influenced by initiation of 
Bm and carbonation temperatures. This variable exerts no meaningful influence on 
the procedure itself. Autogenic pressure increases with rising reaction temperature. 
Comprehending the pressure generated from feedstock-water interactions is essential 
for constructing safe and economical equipment [26, 27]. Pressure levels fluctuate 
based on feedstock type, initial ratios, reaction temperatures and RT. In pressured 
HTC systems, chemical decomposition of materials results in formation of solid 
hydrocarbons, which consist of water, simple organic compounds and gases [28]. 
Pressure at reaction temperature is affected by saturated water vapor pressure, 
partially soluble gases produced during HTC processes and inert non-soluble gases 
(e.g., N) introduced into a pre-pressurized system [29]. Carbon dioxide is the most 
abundant gaseous byproduct, and its concentration affects factors that lead to 
increased pressure. While temperature is a secondary factor, certain studies examine 
its impact on HTC procedures, and have found that elevating it to 250 ºC, and 
boosting pressure to 50 or 240 bar, improves feedstock conversion into 
hydrocarbons. Degree of structural change fluctuates according to feedstock 
composition.  
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It has been discovered by [30], in their Brunauer-Emmett-Teller experiment, that 
raising pressure during HTC process reduced surface area of Maize shell 
hydrocarbons from 7.4 to 4.8 m²/g. HHV of effluent hydrocarbons diminished from 
8.0 to about 6.5 MJ/kg, as pressure escalated from 0.1-0.9 to 3.1-5.4 MPa, 
notwithstanding improved effectiveness of dewatering processes. Therefore, 
temperature and pressure exert a more significant influence on hemicellulose-
cellulose Bm structures than on cellulose-lignin structures [31] 
 
Residence time 
A study by [32] revealed that extended RT accelerates the process, diminishes solid 
regeneration and generates enduring hydrocarbons with a polyaromatic structure. 
Synthesis of secondary HC in lignocellulosic Bm is contingent upon time, while 
temperature exerts a more significant influence on non-dissolved monomers. Elevated 
RT enhances HC synthesis, and produces a greater quantity of intermediate compounds. 
Characteristics of HC derived from Water hyacinth are affected by RT. Decreased RT 
led to fissures on HC's surface, whereas spheres formed after around 6 h.  
According to [33], polymerization and hydrolysis are regulated by RT. Microspheres 
aggregated after 24 h, leading to diverse HC textures. Dimensions of nanoparticles 
were also affected by room temperature. Results demonstrate that temperature exerts 
a more significant influence on HC characteristics than RT. Extending RT from 60 to 
180 min, at 200 °C, during carbonization of Banana stems has reduced hydrocarbon 
production from 61.8 to 57.8% [34]. Nonetheless, both HHV and FCC content had a 
significant rise, from 18.7 to 18.9 MJ/kg and from 35.0 to 44.3%, respectively. 
Increasing process temperature from 160 to 200 ºC (180 min) resulted in a yield 
reduction from 72.8 to 57.8%, while enhancing HHV and preserving FCC from 18.4 
to 18.9 MJ/kg, and from 22.5 to 44.3%, respectively. Needed RT to polymerize 
produced hydrocarbons to a specified extent has been established by [35]. 
 
Catalysts 
Inorganic and organic catalysts can expedite chemical reactions during thermal 
carbonization, and improve hydrocarbon properties. Inclusion decreases reaction 
temperature, enhances hydrolysis, facilitates denitrogenation and deoxygenation, 
increases hydrocarbon yield, and functionalizes produced hydrocarbons [36]. 
Natural fertilizer catalysts, such as acids and alcohols, can initiate or accelerate 
chemical processes. Natural acids decompose water, generating neutral solvents that 
accelerate reaction rates.  
Citric acids, a safe and economical acidic catalyst, improve Bm conversions during 
HTC process by degrading bio-polymers. This promotes HC formation and elevates 
material content. Increasing concentration of citric acid from 0.1 to 0.5 M post-HTC 
resulted in enhanced FCT and HC in dewatered waste-activated drainage [37]. 
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Carbonization of material with citric acid may lead to formation of other acids, such 
as formic or acetic acids, which engage with minerals, thus influencing hydrolysis 
dehydration process [38].  
Acidic circumstances can yield functional chemicals that strengthen cellulose 
framework and remove elements and organic groups from Bm supply, leading to 
coarser and more porous structures. Reports indicate that employing acidic 
conditions in HTC process with cellulose microfibers derived from softwood pulp 
enhanced diameter of C spheres [39]. Employing citric acid as catalyst facilitates 
degradation of cellulose, yielding soluble oligomers and glucose. Molecules undergo 
dehydration, compaction and polymerization, to yield C spheres.  
Acetic acid influences hydrocarbon properties and HTC process. This catalyst has 
enhanced thermal stability and FCC, while generating fewer hydrocarbons compared 
to alternative catalysts. Structure of citric acid enhances carbon content during HTC, 
and its acidic properties promote dissolution of organic molecules in substrates more 
effectively than acetic acid. Consequently, acids may be more effective in 
diminishing yield via fragmentation reactions than in promoting polymerization [40].  
Protic solvents, like methanol and ethanol, form hydrogen bonds with 
electronegative molecules, such as oxygen and nitrogen. Hydrogen bonding and 
donation can augment hydrocarbon production from high-protein and carbohydrate 
feedstocks [41]. Incorporation of artificial acidic reagents enhances hydrocarbon 
properties by leaching organic molecules, establishing acidic mineral conditions, 
eliminating ash and depolymerizing cellulose, thus improving hydrolysis and 
dehydration processes.  
Inorganic catalysts consist of robust mineral bases and acids, aluminum chlorides, 
sulfate and nitrate salts, iron oxides and hydrogen peroxide [42]. Strong acids in 
minerals enhance fuel properties and nutrient release of HC. This leads to enhanced 
porosity and reduced volatile material concentration during HTC, hence improving 
the hydrate’s stability. Sulfuric acid has been investigated as catalyst for 
carbonization of sewage sludge, with findings indicating that its addition 
significantly enhances specific surface area, facilitating feedstock decomposition 
and conversion. The use of a catalyst facilitated immigration of elements, leading to 
elevated concentrations of Cu, Zn and ZnO in HC, while concurrently reducing 
quantities of Cr and Ni compounds [43]. Post-processing water contained elevated 
concentrations of P, Ca, Mg and Zn. A robust mineral foundation, such as CaO, 
enhances hydrocarbon production and ash concentration, while diminishing organic 
matter, particularly polycyclic aromatic hydrocarbons [44]. Sodium hydroxide can 
mitigate sulfur dioxide and nitrogen oxides emitted by hydrocarbon combustion, 
while improving moisture diffusivity. Metal chlorides alter structure and surface 
characteristics of HC, lower activation conditions, accelerate dehydration, and 
enhance thermal escalation alongside burning of solids [45]. The study indicates that 
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type of material and HTC frequency significantly influence HC characteristics. 
Optimizing procedures for particular applications necessitates considering precursor 
Bm and final utilization [46]. 
 
Environmental applications for hydrocarbons 
Fossil fuel 
Numerous wealthy countries aiming for a bio-based economy seek to harness 
wasted Bm as sustainable energy source and feedstock for biofuel production. HTC 
is an established method for enhancing Bm fuel properties and developing novel 
biofuels [47]. HC surpasses untreated wood in fuel quality, exhibiting greater FCC’s 
total energy density, reduced ash and volatile content, enhanced reactivity, improved 
dewaterability and superior material robustness. Generated HC possesses 
characteristics comparable or superior to those of commercial coal and lignite. HTC 
technique facilitates leaching of inorganic compounds from original Bm, hence 
diminishing ash content in hydrocarbon fuels. Carbonizing grape juice at 200 ºC 
decreased ash percentage in HC from 6.48 to 3.55%. This resulted from total 
absorption of inorganic minerals (K, Mg, Ca, Si and P) during water processing 
[48]. A reduced ash percentage is essential for solid fuels, since elevated levels of 
organic constituents (Si, K, Na, S, chlorine, P, Ca, Mg and Fe) in fuels, in 
conjunction with Bm, can lead to emissions, oxidation, clogging, contaminants and 
clinkers in combustors during direct combustion process [49]. These problems result 
in increased maintenance expenses and diminished fuel efficiency. Bm is more 
volatile than coal, resulting in inefficient combustion and increased greenhouse gas 
emissions. Research by [50] indicates that HTC can reduce volatile content of waste 
biomass [51]. This study has shown that heating urban materials at 180 °C rose 
volatile chemicals from 80.7 to 82.2%. Lignocellulose starts hydrolysis at 180 ºC, 
which has astonished researchers. Leached volatile chemicals from treated water can 
accumulate on hydrocarbon substrates. Aromatic adsorption was notably significant 
during HTC procedures on sludge at 180 °C. An elevated HTC temperature has 
diminished HC's peak, which refers to breakdown rate.  
Research indicates that heating wood to 220 ºC leads to devolatilization of 
macromolecules and creation of stable hydrocarbons. This could benefit the 
environment by enhancing production and utilization of Bm-based products, 
including solid energy sources [52]. Fragments undergo degradation through 
dehydration, decarboxylation and aromatization, resulting in a carbon-rich solid. 
Concurrent breakdown activities in HTC yield HC with reduced volatile content 
were similar to those of comparable Bm [53]. Hydrocarbon as bio-energy offers 
benefits compared to traditional petroleum and Bm, such as HHV and LHV. These 
attributes render them appropriate for applications beyond fuel. Temperature is once 
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more the primary determinant of these parameters. A study by [54] has indicated 
that HTC treatment with Miscanthus, wool stem and Paulownia leaves resulted in 
increases of 58 and 65% in HHV and LHV, respectively, compared to pure 
mushroom media. 
 
Adsorbents for contaminants in liquid solutions 
HC possesses the capability to eliminate pollutants from water, among other uses. 
Presence of oxygenated groups in the structure rendered it appropriate for future 
functionalization and surface area modification using physical and chemical 
techniques. Various modification techniques, such as alkaline agents (KOH and 
NaOH), acids (H3PO4 and HCl), metallic salts (ZnCl2, MgCl and K2CO3) and 
polymerization processes have been employed [55]. KOH, a prevalent activator, 
cleanses partially obstructed pores while simultaneously introducing newly 
generated ions to HC surfaces. Alkaline treatment increases surface area by 
eliminating organic particles from HC, but acidic method modifies mesoporous 
structure. Proposed solutions involve incorporating functional structures into HC 
surfaces and altering sorbent materials to create tailored structures, hence enhancing 
efficacy in removal of diverse contaminants [56]. 
Heavy metal contamination in industrial water poses a significant risk to 
environmental integrity and human health. Contaminants include mercury, lead, 
inorganic dyes, pesticides and other natural substances discharged into river 
watercourses, which elicit significant concerns. Pollutants originate from 
agricultural and mining effluents, encompassing those from textile, servicing, paper, 
leather, tanning and feeding industries [57]. Harmful and non-recyclable pollutants 
build in tissues of plants, animals and humans, ultimately impairing their 
neurological, liver and reproductive systems, and leading to diseases such as 
dermatitis, cancer and renal failure. It is essential to devise efficient and economical 
techniques for removal of metals, including mercury, and other pollutants from 
industrial effluents prior to their discharge into waterways. Novel sorbents sourced 
from renewable materials, such as HC, are under investigation to enhance traditional 
purification methods [58]. HC possesses restricted surface area and porosity, yet its 
chemically active functional groups (ketones and carboxylic acid groups, especially 
hydroxyl) facilitate effective adsorption.  
Numerous studies have demonstrated that HC sourced from diverse precursors can 
efficiently eliminate metallic elements from aqueous solutions [59]. Moreover, 
various modification strategies have been employed to enhance capacity for certain 
pollutants. A study by [60] has determined that phosphate-modified Aspen sawdust 
HC may function as adsorbent for Pb(II) ions. FTIR analysis indicated that surface 
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compounds eliminated Pb(II) through phosphorus-containing groups, while aromatic 
structures engaged with cations via π interactions. -COOH group of P-HC exhibited 
superior efficacy in adsorbing Pb(II) compared to -OH group. Pb(II) ions exhibited 
adsorption capacity of 119.61 mg/g, with primary mechanisms including 
precipitation, π-π interactions and complexation. KOH-modified grape seeds' HC 
eliminated five times more lead (137 mg/g) compared to unmodified grape pomace 
HC (27.8 mg/g) as evidenced by [61]. The work by [62] indicated that alkaline 
modification resulted in structural alterations, including incorporation of O-rich 
functional groups within its hydrocarbon matrix, adsorption of K+ ions for ion 
exchange with elements such as lead, and remediation of partially obstructed pores. 
As demonstrated by [61], structural changes enhanced Pb2+ adsorption by 
establishing more robust binding sites. Adsorption of specific ions was achieved 
through ion exchange, utilizing a combination of chemicals and Pb(II)-π 
interactions, with Sips isotherm model demonstrating most accurate fit to 
experimental data.  
Mn(II) ions were neutralized utilizing a magnetized HC composite derived from 
pineapple leaves [63]. High capacity of magnetic Watermelon seeds has been shown 
to efficiently eliminate Cd(II) ions from liquids. Application of NaOH to modify HC 
with Ca-doped wasted mushroom substrate has yielded highly efficient sorbents for 
removal of Pb(II) ions. Binding may occur through intricate Pb-π electron 
interactions. An N-doped hydrocarbon derived from corncob was utilized to 
concurrently remove Cu(II) and Cr(VI) ions, contributing to environmental 
sustainability [64].  
Alteration of NH4Cl enhanced adsorption of Cu(II) and Cr(VI) to 1.223 and 1.995 
mmol/g, respectively, in comparison to unmodified HC. Infrared spectrum indicated 
that notable redox processes augmented the number of imine-type protons on the 
surface of N-doped HC, possibly creating additional Cu(II) binding sites. At pH 
levels below point of zero charge, n-plated HC exhibited a greater affinity for 
resorption of Cr(VI) compared to Cu(II), attributed to electrostatic attraction [65]. A 
hybridized amino-modified wood benzene was synthesized by combining the 
molecule with acryloyl chloride, amines, and hydrochloric acid, which was later 
employed to adsorb Cr(VI) ions. Researchers have shown that incorporating amine 
groups onto HC surfaces markedly enhanced adsorption capacity (523.57 mg/g) by 
neutralizing pollutants via electrostatic interactions [66].  
A cost-effective sawdust hydrocarbon composite (MgSi-HC) was utilized for removal 
of Cu(II) and Zn(II). MgSi-HC possesses an extensive, precise contact area and 
clearly delineated pore structure. Adsorption equilibrium values reached a maximum 
values of 214.7 and 227.3 mg/g, for Cu(II) and Zn(II), respectively. Adsorption is 
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thought to involve interactions among electrostatic hydrogen bonds, π-π stacking 
interactions and pore filling.  
Composite HC obtained from residual mushroom substrate has been evaluated for 
its efficacy in removing Pb(II) and Cd(II) ions from water. Freundlich’s isotherm 
experiment demonstrated that Ca-modified HC displayed maximum sorption 
capacities of 297 and 131 mg/g for Pb(II) and Cd(II), respectively. Binding 
encompassed ion exchange, epidermal complexation, mineral precipitation and 
cation-π association [67]. 
 
Colorants  
Dyes, along with heavy metals, are a prevalent cause of industrial pollution, as they 
are highly toxic, carcinogenic and non-biodegradable, even at minimal 
concentrations, presenting a significant threat to all forms of life. Synthetic dyes 
utilized in textile industry can impact aquatic organisms by contaminating water 
sources and infiltrating their food chain. To mitigate environmental pollution, 
industrial water must be treated to eliminate contaminants and colors prior to release 
[68]. Prior research has demonstrated that HC can adsorb these chemicals from 
aqueous environments. A study conducted by [69] on HTC of HC (HC) derived 
from olive waste at 250 ºC evaluated its efficacy in removing methylene blue (MB) 
utilizing Congo red. NMR analysis elucidated the structure of HC. The presence of 
carbonyl and carboxylic groups on HC surface led to practically total dye 
elimination within 120 and 180 min, respectively. Elimination of MB was 
investigated utilizing ozone-treated pine tree HC and KHCO3-modified 
hydrocarbons derived from industrial laundry sludge [70].  
A study by [71] revealed that magnetized watermelon seeds grafted with HC-
chitosan effectively absorbed brilliant green mineral malachite. Ideal circumstances 
for attaining a permeability of 420.02 mg/g were pH of 7.5, duration of 420 min and 
20 mg adsorbent dosage at 298 K. Integration of bimetallic organic framework 
(NiFe-MOF) into bagasse with sugar cane HC resulted in dual 3-D structure 
featuring multiple functional groups and an extraordinarily high removal rate of 
crystal lavender dye (395.9 mg/g)[72]. The modification produced a material with 
double the surface area, increased carboxylic and metal-carboxylate structures, 
enhanced thermal stability and improved chemisorption adsorption. Similarly, 
crystal violet was absorbed utilizing NaOH-activated bagasse residues from sugar 
HC. Cold potash treatment enhanced performance of oxygenated cell groups and 
increased material porosity by removing pore blockages.  
Research [73] indicates that cationic elimination of dye entails electromagnetic 
attraction between introduced MB amino acids, negatively charged functional 
groups on hydrocarbon surfaces, formation of hydrogen bonds, π-π dispersion 
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interactions between aromatic hydrocarbon structures and MB rings, surface 
complexation processes and ion exchange among components. 
Antibiotics and personal care products, including analgesics and antidepressants, are 
categorized as emerging organic pollutants, raising concerns in multiple 
countries[73]. Despite prevalent usage of these compounds to enhance humans and 
animals health, a significant proportion (30% to 90%) is excreted into residential 
sewage via urine, feces and bathing, as they are indigestible. Consequently, since 
medicines are often detected in wastewater, they must be eradicated to prevent 
detrimental consequences[74]. Diverse approaches have been employed for this 
objective, including precipitation, barrier separation and adsorption. HC from HTC 
method is currently undergoing evaluation for its efficacy as adsorbent for this 
category of pollutants[74].  
 
Conclusion 
HTC is an effective thermochemical process that transforms plant materials into 
valuable products such as HC, applicable in various domains, including solid 
biofuels that adsorb, absorb and store intermediates, as well as facilitate soil cleanup 
and conditioning. HC functions variably based on its chemical, chemical-derived 
and structural characteristics. Its highly changeable surface allows for customization 
for various uses. To enhance utilization of HC as sorbent in extensive applications, it 
is crucial to comprehend methods for modifying its surface and facilitating its 
regeneration. Significant advancements have been made in comprehending 
hydrological conversion process, encompassing production mechanisms of HC its 
their fundamental structural characteristics. This work has emphasized 
characteristics of HT process, including pressure, temperature, RT and catalysts, 
along with methods for tailoring its surfaces for environmental applications. 
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