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Abstract

Numerous developed nations have adopted a bio-based economy, with thermochemical
conversion of municipal solid waste biomass (Bm) being the most effective method to
accomplish this objective. Hydrothermal carbonization (HTC) presents a viable method for
conversion of waste Bm through an environmentally sustainable process that utilizes water
as reaction medium and operates at moderate temperatures (180-280 °C). HTC has
effectively generated targeted carbonaceous products from diverse waste sources, including
lignocellulosic Bm, sewage effluent, algae and municipal solid waste. This study examines
critical HTC process parameters and chemical and physical properties of resultant
hydrochar, while exploring potential conversion of modified and functionalized materials
into sustainable solutions for the future.
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Introduction®

Human activities have resulted in proliferation of waste biomass (Bm) over time.
Composting or disposing of waste Bm in open landfills can adversely affect
environment, finances and public health. Although historically seen as waste, Bm is
a valuable sustainable resource that also functions as energy source, demonstrating
environmental friendliness [1]. Certain initiatives aim to enhance crude oil

*The abbreviations list is in page 345.
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production and replenish reservoirs, while others utilize greenhouse gas emissions
for energy generation [2]. Waste Bm is progressively regarded as a renewable
resource capable of mitigating greenhouse gas emissions [3]. Nonetheless, features
such as its low energy potential and equilibrium, elevated ash content, hygroscopic
biological characteristics, storage challenges and emissions produced post-
combustion restrict its application. Thermochemical conversion of Bm into useful
compounds has advanced considerably [4]. Heat-based technologies transform
cellulose into biofuels, adsorbents and important chemicals, including bio-oil
generated from alkaline compounds such as phenolic ketones, acids and furan
derivatives [5]. Various techniques for carbonizing Bm have been established,
including combustion, torrification, gasification by pyrolysis and hydrothermal
carbonization (HTC) treatment. HTC is an effective Bm utilization technique that
significantly contributes to waste treatment and solid biofuel production, being cost-
effective and environmentally friendly. It functions at moderate temperatures (180-
280 °C), employing groundwater as reaction medium.

Raw materials undergo through hydrolysis, dehydration, decarboxylation,
aromatization and condensation during HTC process, which is predominantly
regulated by temperature and residence time (RT), affecting the structure and
qualities of the result [6]. HTC has multiple advantages, such as capacity to
carbonize liquid Bm prior to drying, and to diminish gas emissions resulting from
oxide dissolution in processing water [7-9]. This economical and environmentally
sustainable approach operates at moderate temperatures (180-280 °C), and utilizes
water as catalytic medium, which serves as low-cost solvent and Bm ingredient,
while being ecologically benign and non-toxic. Subcritical water functions as non-
polar solvent under HTC conditions, promoting hydrolysis of organic matter
molecules in Bm, and leading to rapid depolymerization into water-soluble
compounds [10]. Reduced HTC temperature produces functionalized hydrochar
(HC) suitable for pollution adsorption, whilst elevated temperatures generate HC
with enhanced fuel characteristics. Duration of reaction exerts a comparable yet less
pronounced effect on HTC’s sensitivity. Extended reaction durations for
hydrocarbon production give diminished outputs, but enhance aromatic complexity
[11]. Carbonization and canonization in an aqueous environment generate
oxygenated functional groups on solid hydrocarbon surfaces and HC [12, 13].

The method produces high-energy, coal-like hydrocarbons without gas emissions or
necessity for feedstock desiccation. HTC offers advantages over conventional
thermal treatments, including reduced costs and energy consumption, along with
enhanced application diversity [14]. Derived solid residues exhibit significant
hydrophobicity and reliability, facilitating its separation from liquids. Research
demonstrates that it exceeds raw Bm in power and mass density, biodegradability
and combustion efficiency as a stable fuel [15].
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HC has multiple applications, including carbon sequestration, soil augmentation,
bioenergy production and wastewater pollution remediation. Processing water is
generated concurrently with solid HC. It may include hazardous chemical
compounds and present an environmental danger, as the presence of dissolved
organic matter could hinder efficient production of HC from Bm, representing a
significant constraint on HTC process. Consequently, further treatment is necessary
prior to the release of processing water into the environment. To surmount this
obstacle, it is advisable to utilize obtained chemicals or recirculate process water to
diminish water consumption during HTC [16]. This review study elucidates the
influence of HTC variables on HC structure and properties, focusing on biological
Bm conversion, sustainable manufacturing and potential applications for resultant
materials. It underscores the significance of generating carbonaceous materials
sustainably and ecologically [17].

Impact of procedural elements

Hydrocarbons produced from the same feedstock may exhibit varying physical and
chemical properties based on operational parameters. Comprehending the influence
of each aspect is essential for optimizing HTC processes and generating superior
HC. Properties of HC are influenced by various factors, including kind and quantity
of feedstock, pressure, catalyst presence, as well as primary temperature and room
temperature. [18].

Thermal measurement

Temperature is a crucial determinant in defining the structure and characteristics of
final products, affecting ionic and radical processes in supercritical water, as well as
the extent of precursor decomposition and transformation in the energy source.
Temperature variations and quantity of potentially transformed molecules
significantly influence decomposition process [19]. Breakdown of lignocellulosic
Bm commences at 180 °C. Extended reaction durations and elevated temperatures
result in more vigorous Bm transformation reactions. Increased carbonization
temperatures give more carbon-rich hydrocarbons; however, they significantly
reduce solid-phase yield due to degradation [20]. Additionally, high temperatures
accelerate dehydration and decarboxylation processes, leading to a decrease in
oxygen concentration and modifications in both oxygen-to-carbon and hydrogen-to-
carbon atomic ratios in cellulose. The process produces HC with enhanced fuel
properties, particularly when variations occur in higher and lower heating values
(HHV and LHV) [21]. Numerous studies have examined the impact of this method's
component. As deterioration occurs across diverse climates, each bioenergy
component is affected differently by HTC. Plant matter precursors are generally
transformed into solid hydrocarbons at temperatures from 180 to 280 °C. In
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selecting Bm, it is important to consider carbonization and temperature. Elevated
process temperatures led to Bm degradation, which results in diminished HC
generation, volatile matter, and O content, while increasing its fixed carbon content
(FCC) and heat equilibrium [22]. Inorganic components at outset significantly affect
product’s qualities. Thermal treatment over 180 °C eliminates inorganic compounds
from Bm. Additional research has demonstrated that HTC treatment of municipal
solid waste food at temperatures from 180 to260 °C can yield renewable energy
[23]. At 260 °C, HHV produced highest overall fluid catalytic cracking yield, but
lowest mass production. Peak rate of consistent biofuel production was achieved at
180 °C. Experts have concluded that 225 °C is the most reliable temperature for a
specific energy supply. Other researchers have obtained similar findings about the
influence of temperature on hydrocarbon characteristics, such as energy potential,
porosity and re-adsorption capacity of grape pomace and Miscanthus x giganteus
HC, while concurrently reducing volatiles, ashes and moisture content [24].
Dissolution of organic matter has been assessed in HC produced from cow dung,
maize stalk and Myriophyllum aquaticum at three specific temperatures (180, 200,
and 220 °C). Researchers found that elevating HTC temperature reduced dissolved
organic carbon content from HC, enhanced aromatic content and transpiration of
cow dung HC, and affected dissolved organic matter [25]. Nonetheless, it adversely
affected cornstalk and HC.

Elevated pressure

Tension is generated during HTC management, primarily influenced by initiation of
Bm and carbonation temperatures. This variable exerts no meaningful influence on
the procedure itself. Autogenic pressure increases with rising reaction temperature.
Comprehending the pressure generated from feedstock-water interactions is essential
for constructing safe and economical equipment [26, 27]. Pressure levels fluctuate
based on feedstock type, initial ratios, reaction temperatures and RT. In pressured
HTC systems, chemical decomposition of materials results in formation of solid
hydrocarbons, which consist of water, simple organic compounds and gases [28].
Pressure at reaction temperature is affected by saturated water vapor pressure,
partially soluble gases produced during HTC processes and inert non-soluble gases
(e.g., N) introduced into a pre-pressurized system [29]. Carbon dioxide is the most
abundant gaseous byproduct, and its concentration affects factors that lead to
increased pressure. While temperature is a secondary factor, certain studies examine
its impact on HTC procedures, and have found that elevating it to 250 °C, and
boosting pressure to 50 or 240 bar, improves feedstock conversion into
hydrocarbons. Degree of structural change fluctuates according to feedstock
composition.
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It has been discovered by [30], in their Brunauer-Emmett-Teller experiment, that
raising pressure during HTC process reduced surface area of Maize shell
hydrocarbons from 7.4 to 4.8 m*g. HHV of effluent hydrocarbons diminished from
8.0 to about 6.5 MJ/kg, as pressure escalated from 0.1-0.9 to 3.1-5.4 MPa,
notwithstanding improved effectiveness of dewatering processes. Therefore,
temperature and pressure exert a more significant influence on hemicellulose-
cellulose Bm structures than on cellulose-lignin structures [31]

Residence time

A study by [32] revealed that extended RT accelerates the process, diminishes solid
regeneration and generates enduring hydrocarbons with a polyaromatic structure.
Synthesis of secondary HC in lignocellulosic Bm is contingent upon time, while
temperature exerts a more significant influence on non-dissolved monomers. Elevated
RT enhances HC synthesis, and produces a greater quantity of intermediate compounds.
Characteristics of HC derived from Water hyacinth are affected by RT. Decreased RT
led to fissures on HC's surface, whereas spheres formed after around 6 h.

According to [33], polymerization and hydrolysis are regulated by RT. Microspheres
aggregated after 24 h, leading to diverse HC textures. Dimensions of nanoparticles
were also affected by room temperature. Results demonstrate that temperature exerts
a more significant influence on HC characteristics than RT. Extending RT from 60 to
180 min, at 200 °C, during carbonization of Banana stems has reduced hydrocarbon
production from 61.8 to 57.8% [34]. Nonetheless, both HHV and FCC content had a
significant rise, from 18.7 to 18.9 MJ/kg and from 35.0 to 44.3%, respectively.
Increasing process temperature from 160 to 200 °C (180 min) resulted in a yield
reduction from 72.8 to 57.8%, while enhancing HHV and preserving FCC from 18.4
to 18.9 MJ/kg, and from 22.5 to 44.3%, respectively. Needed RT to polymerize
produced hydrocarbons to a specified extent has been established by [35].

Catalysts

Inorganic and organic catalysts can expedite chemical reactions during thermal
carbonization, and improve hydrocarbon properties. Inclusion decreases reaction
temperature, enhances hydrolysis, facilitates denitrogenation and deoxygenation,
increases hydrocarbon yield, and functionalizes produced hydrocarbons [36].
Natural fertilizer catalysts, such as acids and alcohols, can initiate or accelerate
chemical processes. Natural acids decompose water, generating neutral solvents that
accelerate reaction rates.

Citric acids, a safe and economical acidic catalyst, improve Bm conversions during
HTC process by degrading bio-polymers. This promotes HC formation and elevates
material content. Increasing concentration of citric acid from 0.1 to 0.5 M post-HTC
resulted in enhanced FCT and HC in dewatered waste-activated drainage [37].

338



M. Asifet al. / Portugaliae Electrochimica Acta 45 (2027) 334-352

Carbonization of material with citric acid may lead to formation of other acids, such
as formic or acetic acids, which engage with minerals, thus influencing hydrolysis
dehydration process [38].

Acidic circumstances can yield functional chemicals that strengthen cellulose
framework and remove elements and organic groups from Bm supply, leading to
coarser and more porous structures. Reports indicate that employing acidic
conditions in HTC process with cellulose microfibers derived from softwood pulp
enhanced diameter of C spheres [39]. Employing citric acid as catalyst facilitates
degradation of cellulose, yielding soluble oligomers and glucose. Molecules undergo
dehydration, compaction and polymerization, to yield C spheres.

Acetic acid influences hydrocarbon properties and HTC process. This catalyst has
enhanced thermal stability and FCC, while generating fewer hydrocarbons compared
to alternative catalysts. Structure of citric acid enhances carbon content during HTC,
and its acidic properties promote dissolution of organic molecules in substrates more
effectively than acetic acid. Consequently, acids may be more effective in
diminishing yield via fragmentation reactions than in promoting polymerization [40].
Protic solvents, like methanol and ethanol, form hydrogen bonds with
electronegative molecules, such as oxygen and nitrogen. Hydrogen bonding and
donation can augment hydrocarbon production from high-protein and carbohydrate
feedstocks [41]. Incorporation of artificial acidic reagents enhances hydrocarbon
properties by leaching organic molecules, establishing acidic mineral conditions,
eliminating ash and depolymerizing cellulose, thus improving hydrolysis and
dehydration processes.

Inorganic catalysts consist of robust mineral bases and acids, aluminum chlorides,
sulfate and nitrate salts, iron oxides and hydrogen peroxide [42]. Strong acids in
minerals enhance fuel properties and nutrient release of HC. This leads to enhanced
porosity and reduced volatile material concentration during HTC, hence improving
the hydrate’s stability. Sulfuric acid has been investigated as catalyst for
carbonization of sewage sludge, with findings indicating that its addition
significantly enhances specific surface area, facilitating feedstock decomposition
and conversion. The use of a catalyst facilitated immigration of elements, leading to
elevated concentrations of Cu, Zn and ZnO in HC, while concurrently reducing
quantities of Cr and Ni compounds [43]. Post-processing water contained elevated
concentrations of P, Ca, Mg and Zn. A robust mineral foundation, such as CaO,
enhances hydrocarbon production and ash concentration, while diminishing organic
matter, particularly polycyclic aromatic hydrocarbons [44]. Sodium hydroxide can
mitigate sulfur dioxide and nitrogen oxides emitted by hydrocarbon combustion,
while improving moisture diffusivity. Metal chlorides alter structure and surface
characteristics of HC, lower activation conditions, accelerate dehydration, and
enhance thermal escalation alongside burning of solids [45]. The study indicates that
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type of material and HTC frequency significantly influence HC characteristics.
Optimizing procedures for particular applications necessitates considering precursor
Bm and final utilization [46].

Environmental applications for hydrocarbons

Fossil fuel

Numerous wealthy countries aiming for a bio-based economy seek to harness
wasted Bm as sustainable energy source and feedstock for biofuel production. HTC
is an established method for enhancing Bm fuel properties and developing novel
biofuels [47]. HC surpasses untreated wood in fuel quality, exhibiting greater FCC’s
total energy density, reduced ash and volatile content, enhanced reactivity, improved
dewaterability and superior material robustness. Generated HC possesses
characteristics comparable or superior to those of commercial coal and lignite. HTC
technique facilitates leaching of inorganic compounds from original Bm, hence
diminishing ash content in hydrocarbon fuels. Carbonizing grape juice at 200 °C
decreased ash percentage in HC from 6.48 to 3.55%. This resulted from total
absorption of inorganic minerals (K, Mg, Ca, Si and P) during water processing
[48]. A reduced ash percentage is essential for solid fuels, since elevated levels of
organic constituents (Si, K, Na, S, chlorine, P, Ca, Mg and Fe) in fuels, in
conjunction with Bm, can lead to emissions, oxidation, clogging, contaminants and
clinkers in combustors during direct combustion process [49]. These problems result
in increased maintenance expenses and diminished fuel efficiency. Bm is more
volatile than coal, resulting in inefficient combustion and increased greenhouse gas
emissions. Research by [50] indicates that HTC can reduce volatile content of waste
biomass [51]. This study has shown that heating urban materials at 180 °C rose
volatile chemicals from 80.7 to 82.2%. Lignocellulose starts hydrolysis at 180 °C,
which has astonished researchers. Leached volatile chemicals from treated water can
accumulate on hydrocarbon substrates. Aromatic adsorption was notably significant
during HTC procedures on sludge at 180 °C. An elevated HTC temperature has
diminished HC's peak, which refers to breakdown rate.

Research indicates that heating wood to 220 °C leads to devolatilization of
macromolecules and creation of stable hydrocarbons. This could benefit the
environment by enhancing production and utilization of Bm-based products,
including solid energy sources [52]. Fragments undergo degradation through
dehydration, decarboxylation and aromatization, resulting in a carbon-rich solid.
Concurrent breakdown activities in HTC yield HC with reduced volatile content
were similar to those of comparable Bm [53]. Hydrocarbon as bio-energy offers
benefits compared to traditional petroleum and Bm, such as HHV and LHV. These
attributes render them appropriate for applications beyond fuel. Temperature is once
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more the primary determinant of these parameters. A study by [54] has indicated
that HTC treatment with Miscanthus, wool stem and Paulownia leaves resulted in
increases of 58 and 65% in HHV and LHV, respectively, compared to pure
mushroom media.

Adsorbents for contaminants in liquid solutions

HC possesses the capability to eliminate pollutants from water, among other uses.
Presence of oxygenated groups in the structure rendered it appropriate for future
functionalization and surface area modification using physical and chemical
techniques. Various modification techniques, such as alkaline agents (KOH and
NaOH), acids (H3PO4 and HCI), metallic salts (ZnCIl2, MgCIl and K2CO3) and
polymerization processes have been employed [55]. KOH, a prevalent activator,
cleanses partially obstructed pores while simultaneously introducing newly
generated ions to HC surfaces. Alkaline treatment increases surface area by
eliminating organic particles from HC, but acidic method modifies mesoporous
structure. Proposed solutions involve incorporating functional structures into HC
surfaces and altering sorbent materials to create tailored structures, hence enhancing
efficacy in removal of diverse contaminants [56].

Heavy metal contamination in industrial water poses a significant risk to
environmental integrity and human health. Contaminants include mercury, lead,
inorganic dyes, pesticides and other natural substances discharged into river
watercourses, which elicit significant concerns. Pollutants originate from
agricultural and mining effluents, encompassing those from textile, servicing, paper,
leather, tanning and feeding industries [57]. Harmful and non-recyclable pollutants
build in tissues of plants, animals and humans, ultimately impairing their
neurological, liver and reproductive systems, and leading to diseases such as
dermatitis, cancer and renal failure. It is essential to devise efficient and economical
techniques for removal of metals, including mercury, and other pollutants from
industrial effluents prior to their discharge into waterways. Novel sorbents sourced
from renewable materials, such as HC, are under investigation to enhance traditional
purification methods [58]. HC possesses restricted surface area and porosity, yet its
chemically active functional groups (ketones and carboxylic acid groups, especially
hydroxyl) facilitate effective adsorption.

Numerous studies have demonstrated that HC sourced from diverse precursors can
efficiently eliminate metallic elements from aqueous solutions [59]. Moreover,
various modification strategies have been employed to enhance capacity for certain
pollutants. A study by [60] has determined that phosphate-modified Aspen sawdust
HC may function as adsorbent for Pb(II) ions. FTIR analysis indicated that surface
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compounds eliminated Pb(II) through phosphorus-containing groups, while aromatic
structures engaged with cations via m interactions. -COOH group of P-HC exhibited
superior efficacy in adsorbing Pb(II) compared to -OH group. Pb(Il) ions exhibited
adsorption capacity of 119.61 mg/g, with primary mechanisms including
precipitation, m-m interactions and complexation. KOH-modified grape seeds' HC
eliminated five times more lead (137 mg/g) compared to unmodified grape pomace
HC (27.8 mg/g) as evidenced by [61]. The work by [62] indicated that alkaline
modification resulted in structural alterations, including incorporation of O-rich
functional groups within its hydrocarbon matrix, adsorption of K+ ions for ion
exchange with elements such as lead, and remediation of partially obstructed pores.
As demonstrated by [61], structural changes enhanced Pb2+ adsorption by
establishing more robust binding sites. Adsorption of specific ions was achieved
through ion exchange, utilizing a combination of chemicals and Pb(Il)-n
interactions, with Sips isotherm model demonstrating most accurate fit to
experimental data.

Mn(II) ions were neutralized utilizing a magnetized HC composite derived from
pineapple leaves [63]. High capacity of magnetic Watermelon seeds has been shown
to efficiently eliminate Cd(II) ions from liquids. Application of NaOH to modify HC
with Ca-doped wasted mushroom substrate has yielded highly efficient sorbents for
removal of Pb(I) ions. Binding may occur through intricate Pb-m electron
interactions. An N-doped hydrocarbon derived from corncob was utilized to
concurrently remove Cu(Il) and Cr(VI) ions, contributing to environmental
sustainability [64].

Alteration of NH4Cl enhanced adsorption of Cu(II) and Cr(VI) to 1.223 and 1.995
mmol/g, respectively, in comparison to unmodified HC. Infrared spectrum indicated
that notable redox processes augmented the number of imine-type protons on the
surface of N-doped HC, possibly creating additional Cu(Il) binding sites. At pH
levels below point of zero charge, n-plated HC exhibited a greater affinity for
resorption of Cr(VI) compared to Cu(Il), attributed to electrostatic attraction [65]. A
hybridized amino-modified wood benzene was synthesized by combining the
molecule with acryloyl chloride, amines, and hydrochloric acid, which was later
employed to adsorb Cr(VI) ions. Researchers have shown that incorporating amine
groups onto HC surfaces markedly enhanced adsorption capacity (523.57 mg/g) by
neutralizing pollutants via electrostatic interactions [66].

A cost-effective sawdust hydrocarbon composite (MgSi-HC) was utilized for removal
of Cu(Il) and Zn(II). MgSi-HC possesses an extensive, precise contact area and
clearly delineated pore structure. Adsorption equilibrium values reached a maximum
values of 214.7 and 227.3 mg/g, for Cu(ll) and Zn(II), respectively. Adsorption is
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thought to involve interactions among electrostatic hydrogen bonds, m-m stacking
interactions and pore filling.

Composite HC obtained from residual mushroom substrate has been evaluated for
its efficacy in removing Pb(Il) and Cd(Il) ions from water. Freundlich’s isotherm
experiment demonstrated that Ca-modified HC displayed maximum sorption
capacities of 297 and 131 mg/g for Pb(Il) and Cd(II), respectively. Binding
encompassed ion exchange, epidermal complexation, mineral precipitation and
cation-w association [67].

Colorants

Dyes, along with heavy metals, are a prevalent cause of industrial pollution, as they
are highly toxic, carcinogenic and non-biodegradable, even at minimal
concentrations, presenting a significant threat to all forms of life. Synthetic dyes
utilized in textile industry can impact aquatic organisms by contaminating water
sources and infiltrating their food chain. To mitigate environmental pollution,
industrial water must be treated to eliminate contaminants and colors prior to release
[68]. Prior research has demonstrated that HC can adsorb these chemicals from
aqueous environments. A study conducted by [69] on HTC of HC (HC) derived
from olive waste at 250 °C evaluated its efficacy in removing methylene blue (MB)
utilizing Congo red. NMR analysis elucidated the structure of HC. The presence of
carbonyl and carboxylic groups on HC surface led to practically total dye
elimination within 120 and 180 min, respectively. Elimination of MB was
investigated utilizing ozone-treated pine tree HC and KHCOs-modified
hydrocarbons derived from industrial laundry sludge [70].

A study by [71] revealed that magnetized watermelon seeds grafted with HC-
chitosan effectively absorbed brilliant green mineral malachite. Ideal circumstances
for attaining a permeability of 420.02 mg/g were pH of 7.5, duration of 420 min and
20 mg adsorbent dosage at 298 K. Integration of bimetallic organic framework
(NiFe-MOF) into bagasse with sugar cane HC resulted in dual 3-D structure
featuring multiple functional groups and an extraordinarily high removal rate of
crystal lavender dye (395.9 mg/g)[72]. The modification produced a material with
double the surface area, increased carboxylic and metal-carboxylate structures,
enhanced thermal stability and improved chemisorption adsorption. Similarly,
crystal violet was absorbed utilizing NaOH-activated bagasse residues from sugar
HC. Cold potash treatment enhanced performance of oxygenated cell groups and
increased material porosity by removing pore blockages.

Research [73] indicates that cationic elimination of dye entails electromagnetic
attraction between introduced MB amino acids, negatively charged functional
groups on hydrocarbon surfaces, formation of hydrogen bonds, m-m dispersion
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interactions between aromatic hydrocarbon structures and MB rings, surface
complexation processes and ion exchange among components.

Antibiotics and personal care products, including analgesics and antidepressants, are
categorized as emerging organic pollutants, raising concerns in multiple
countries[73]. Despite prevalent usage of these compounds to enhance humans and
animals health, a significant proportion (30% to 90%) is excreted into residential
sewage via urine, feces and bathing, as they are indigestible. Consequently, since
medicines are often detected in wastewater, they must be eradicated to prevent
detrimental consequences[74]. Diverse approaches have been employed for this
objective, including precipitation, barrier separation and adsorption. HC from HTC
method is currently undergoing evaluation for its efficacy as adsorbent for this
category of pollutants[74].

Conclusion

HTC is an effective thermochemical process that transforms plant materials into
valuable products such as HC, applicable in various domains, including solid
biofuels that adsorb, absorb and store intermediates, as well as facilitate soil cleanup
and conditioning. HC functions variably based on its chemical, chemical-derived
and structural characteristics. Its highly changeable surface allows for customization
for various uses. To enhance utilization of HC as sorbent in extensive applications, it
is crucial to comprehend methods for modifying its surface and facilitating its
regeneration. Significant advancements have been made in comprehending
hydrological conversion process, encompassing production mechanisms of HC its
their fundamental structural characteristics. This work has emphasized
characteristics of HT process, including pressure, temperature, RT and catalysts,
along with methods for tailoring its surfaces for environmental applications.
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HC: hydrochar
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HT: hydrothermal
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RT: residence time
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