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Abstract 
Agricultural residues are being explored as sustainable energy sources to mitigate global 
warming and reduce greenhouse gas emissions. This study investigates biofuel 
production from a free-fall reactor using sugarcane bagasse (SCB) and cassava rhizome 
(CR) as feedstocks, employing both experimental and modelling approaches. Pyrolysis 
was conducted with varying SCB-CR blend ratios, from 400 to 650 °C, with a 30 min 
residence time, to analyse yields of biochar, bio-oil and biogas. Ultimate and proximate 
analyses were performed on feedstocks and biofuels, to determine their properties. 
Mathematical models for biofuel yields were developed using multi-expression 
programming (MEP), and validated against multilinear regression (MLR). Optimal 50:50 
SCB-CR composition produced the highest bio-oil yield of 36.2%, with a heating value 
of 23.6 MJ/kg, at 550 °C, alongside with 16.2% biochar and 47.6% biogas. MEP models 
demonstrated superior accuracy, with R² values of 0.974, 0.917 and 0.774, for biochar, 
bio-oil and biogas, respectively, outperforming MLR models. Results indicate that co-
pyrolysis of SCB and CR enhanced biofuel yield and quality, due to synergistic effects. 
Integration of experimental data with modelling provides a pathway in optimizing process 
parameters for large-scale biofuel production. 

 
Keywords: biofuel; CR; modelling; MEP; pyrolysis; SCB. 
 

 
 
Introduction 
The energy crisis around the globe has deepened, due to an over-reliance on fossil 
fuels for energy generation. Escalating demand for energy, driven by rapid 
population growth, enhanced living standards and technological progress, has led 
to a rise in costs associated with fossil fuels [1]. Unfortunately, usage of fossil fuels 
has contributed significantly to environmental degradation, manifesting in the 
form of greenhouse gas emissions and global warming [2]. To overcome these 
                                            
The abbreviations list is in page 197. 
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challenges, there has been an increased emphasis on renewable energy sources like 
biomass, wind, hydrothermal and solar energy [3]. Thus, there is an urgent need to 
explore alternative and sustainable energy sources such as biomass [4]. Biomass 
can be a low-cost, clean and eco-friendly energy source. Hemicellulose, cellulose 
and lignin are its three main constituents [5]. Conventional biomass is generally 
categorized into two main types: terrestrial and aquatic. Main conversion 
feedstocks are wood and energy crops, although their availability is seasonal and 
heterogeneous [6].  
Sugarcane bagasse (SCB) is a fibrous residue material derived from the extraction 
of juice in the plant’s stalk. It contains cellulose, hemicellulose and lignin, making 
it an excellent option for generation of renewable energy and bio-based compounds 
[7]. Moreover, SCB has found applications in heat and electricity generation within 
sugar mills, paper production, cattle feed and manufacturing of disposable food 
containers, due to its high calorific value [3]. Cassava is one of Nigeria's most 
commonly grown and economically staple crops. Nigeria is one of the major 
cassava producers in 2021, with approximately 63 million tons. Cassava rhizome 
(CR), peels, leaves and stalks are often considered residues [8]. Cassava residues 
are inexpensive, plentiful and renewable feedstock that can be transformed into 
biofuel with a high hydrocarbon content [9]. Regrettably, these residues are 
frequently burned in fields, wasting potential energy resources. Notably, CR can 
be converted into biochar, bio-oil and biogas through pyrolysis [10]. SCB and CR 
are high-potential biofuel feedstocks, due to their superior availability in tropical 
agricultural economies and relatively high heating values (16–18 MJ/kg), 
surpassing those of rice husk, corn stover and wood residues. Their status as low-
cost agro-wastes further enhances their economic attractiveness, supporting 
sustainable waste valorisation and bioeconomy development [3, 8]. 
SCB and CR are ideal lignocellulosic feedstocks for pyrolysis, due to their high 
cellulose and hemicellulose content, which enhances bio-oil production. SCB’s 
lower ash content (1-6%) compared to CR, particularly in nutrient-rich soils, 
makes it more efficient in pyrolysis [7, 8]. Lignin in both feedstocks contributes to 
increased char production and energy density [5]. In contrast to traditional biofuel 
feedstocks, such as wood biomass, algae and municipal waste, SCB and CR offer 
significant advantages. Wood biomass has stable energy yields, but is scarce in 
tropical regions, while algae-based biofuels require costly cultivation and 
harvesting [11-12]. Waste-derived biofuels are highly variable in composition and 
difficult to process. SCB and CR, abundant in tropical regions like Nigeria, Brazil 
and Thailand, provide reliable and low-cost alternatives for biofuel production 
without competing with food crops [3, 8].  
Pyrolysis is a thermochemical process for biomass conversion in the absence of 
oxygen, and at temperatures ranging from 300 to 700°C. In the process of 
pyrolysis, thermal breakdown of biomass takes place within the reactor [13]. 
Thermal efficiency of pyrolysis reactors is based on design, feedstock and 
operating conditions. Various types of reactors have specific configurations and 
operating modes. Some of the commonly used reactor types include fixed and 
fluidized beds, vacuum, ablative systems, solar pyrolytic, plasma reactors, 
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microwave and free-fall reactors [14, 18]. Free-fall reactors efficiently process 
large feedstocks, reduce residence time and ensure uniform thermal exposure, 
potentially boosting yields. However, they have lower heat recovery potential [19]. 
In contrast, although fluidized bed reactors provide better heat control and offer up 
to 75% efficiency, due to excellent heat and mass transfer and uniform temperature 
distribution [21], they use biomass with the same small particle size as feedstock. 
Fixed bed reactors have the simplest and robust design, but they may be inefficient 
with large volumes [15, 22], usually 30-50%, due to slower heat transfer and batch 
operation. Microwave reactors deliver quick heating, but are prone to hot spots and 
scaling issues [18].  
Since free-fall reactors have moderate to high efficiency, ranging from 40-65%, 
due to rapid heating and short residence time [20], they are suitable for fast 
pyrolysis applications. This comparison highlights free-fall reactors as a suitable 
option for fast pyrolysis, where simplicity and ease of operation are prioritized, 
despite its lower efficiency compared to fluidized-bed systems. 
Temperatures of reactors generally vary from 250 to 600 ºC, depending on biomass 
feedstock and envisioned output distribution (solid, liquid and gaseous products). 
During pyrolysis process, the biomass is transformed into pyrolytic oil (bio-oil), 
biochar and biogas [23]. Pyrolysis factors like temperature, heating rate and 
residence time affect product distribution yields in the process, which is usually 
carried out at atmospheric or slightly higher pressure. Pyrolysis may be classified 
as slow, moderate, fast, ultra-quick or flash, based on differences in temperature, 
heating rate, residence time and end products [24]. Efficient heat distribution 
enhances bio-oil yield, by enabling fast pyrolysis and minimizing secondary 
reactions. However, free-fall reactors often suffer from limited residence time, 
resulting in uneven heating and variable product quality [19]. 
The choice of heat source in pyrolysis significantly affects both energy efficiency 
and environmental impact. Although fossil fuel heating offers consistent thermal 
performance, it contributes heavily to greenhouse gas emissions. Solar-assisted 
systems are cleaner, but limited by irradiance variability, hindering continuous 
reactor operation [13]. Biomass-based heating supports carbon neutrality and 
energy self-sufficiency. However, it is constrained by feedstock inconsistency and 
heat recovery challenges. Electric heating enhances pyrolysis performance by 
ensuring rapid and uniform heating, although its sustainability is directly 
influenced by the source of electricity used [25]. 
The efficacy of combining fast and slow pyrolysis techniques to convert different 
biomass feedstocks such as hybrid poplar, maple, pine and SCB into bio-oil and 
biochar has been investigated by [19]. This process has used a free-fall reactor 
integrated with a batch reactor, to optimize product quality and yield. A fluidized-
bed reactor was used in the study by [15], conducting fast pyrolysis on palm kernel 
cake, to investigate process parameters for achieving optimal bio-yield and 
properties. Pyrolyzed CR has been investigated by [26], employing a counter-
rotating twin screw reactor unit with numerous parameters, including pyrolysis 
temperature, particle size and N flow rate. It has been discovered that a pyrolysis 
temperature of 550 °C may maximize the yield of bio-oil. 
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A laboratory-scale free-fall reactor has been used by [14], to pyrolyze agricultural 
residues from SCB and CR. They have studied the impact of biomass types and 
pyrolysis parameters on product distribution and their characteristics. Pyrolysis of 
torrefied Acacia nilotica in a tubular fixed-bed reactor with a N atmosphere has been 
studied by [27]. The authors have optimized the process by combining a central 
composite design with a response surface approach to maximize pyrolysis oil’s 
yield. Characteristics of bio-oil and char produced by fast pyrolysis of CR have been 
investigated by [22], in a free-fall reactor, which was catalysed by the addition of 
several soil conditioners (or improvers). The experimentation’s outcome has 
indicated that yields of char improved, while those of bio-oil and gas decreased. 
In the study by [28], thermodynamic models have been developed to examine 
possibilities for biomass vaporization through pyrolysis and in-line steam 
reforming methods. In relation to process factors, a rigorous analysis has been 
conducted on yield, product composition and product selectivity of both methods. 
A modified vacuum reactor that transforms SCB at low temperatures into gas 
products has been built by [13]. Experimental approach has considered the effects 
of pyrolysis duration, temperature and current application as a function of an 
electromagnetic field. A thermosyphon-fixed bed reactor has also been built by 
[10], to explore temperature distribution and characteristics of torrefied char in five 
distinct configurations, using CR as feedstock. The use of thermosyphons in 
conjunction with a fixed bed reactor enhanced temperature uniformity. 
Sweeping gas flow rate, heating rate, process temperature, retention time and 
particle size have been highlighted, by [21], as key factors influencing product 
yield and properties such as viscosity, heating value, acidity and chemical 
composition. Optimizing these parameters holds potential to significantly impact 
reactor scaling, system economy and efficiency [29].  
Many researchers have successfully employed response surface methodology, a 
versatile statistical tool known for its efficacy, time efficiency and energy savings 
in optimizing various engineering processes [30]. However, a mathematical model 
is needed to uncover complex relationships between pyrolysis parameters and 
biofuel yields. The utilization of machine learning is essential for tackling issues 
associated with valorisation of agricultural residues, since it is able to handle 
intricate, nonlinear and multiobjective tasks [31]. It has benefits above traditional 
statistical models in terms of its capability to learn from historical data, recognize 
trends and generate accurate forecasts. The utilization of multi-expression 
programming (MEP) in this study is warranted, due to its ability to build 
interpretable mathematical expressions that explicitly illustrate the relationship 
between independent and dependent variables, unlike black-box models (such as 
artificial neural network, random forest, support vector machine) [32]. 
The effective utilization of biomass faces challenges due to a lack of appropriate 
technologies to convert biomass into valuable products, and weak government 
policies that hinder harnessing potential benefits of these solid residues [33]. To 
overcome these challenges, it is imperative to develop a pyrolysis reactor that is 
capable of efficiently converting solid residues into valuable bio-products, which 
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might consequently address both energy crisis and waste management issues in 
developing countries. 
The motivation for this research stems from the escalating energy demand and 
incessant rise in fossil fuel costs. Africa produces around 5% of the world's 
sugarcane, with Sub-Saharan African countries accounting for 30% of the 
continent’s production. Concurrently, there has been a significant increase in 
sugarcane cultivation, leading to a surplus of waste material [33]. Addressing the 
challenges of energy scarcity and waste management constitutes the primary 
driving force behind this study.  
This research aimed to produce biofuels through pyrolysis of SCB and CR in a 
free-fall reactor. The goals of this study included: assess the impact of varying the 
ratio of SCB to CR mixtures on the yield of biofuels; characterize biochar, bio-oil 
and biogas yield under desired conditions, using ASTM D3172; and develop 
mathematical models for yields of biofuel, using MEP. The comprehensive 
analysis of this study contributed to existing research by reducing waste from 
agriculture residues to valuable energy resources, by investigating free-fall reactor 
systems, to maximize bio-oil output and facilitate effective thermal breakdown. In 
addition, it facilitates the valorisation of waste, so as to align with circular economy 
and Sustainable Development Goal 7: Affordable and Clean Energy targets. 
 
Methodology 
Sample collection and preparation 
CR was collected from TJ International Farm, at Konta Ijabe, Osun State, while 
SCB was obtained from a farm near Bacita Sugar Company, in Kwara State, 
Nigeria. Feedstocks were washed with water to remove impurities, and sun-dried 
for 7 days. Dried materials were grounded and sieved to 1 mm particle size [19]. 
Proximate and ultimate analyses of raw CR and SCB feedstocks (Table 1) were 
conducted in accordance with ASTM D3176 and D3172, respectively. SCB and 
CR have a higher volatile matter content of 77.09 and 72.56% respectively, which 
indicate greater potential for bio-oil production [14]. Also, CR, with its higher 
fixed carbon content (13.15%), when compared with SCB, may yield more biochar 
[34]. Ash content, which is slightly higher in CR (6.37%) than in SCB (5.55%), 
can affect product quality and reactor performance. Elevated ash levels are known 
to reduce liquid yields, and complicate reactor operation, due to slagging and 
fouling [8]. SCB and CR have lower moisture content, which is beneficial, since 
excessive moisture reduces thermal efficiency [25]. From ultimate analysis, both 
feedstocks exhibit relatively high C (46.75–48.01%) and H (6.4–6.6%) contents, 
which are favourable for high-energy yield during pyrolysis [34]. Lower heating 
value (LHV) of CR (12.5 MJ/kg) and SCB (18.2 MJ/kg) highlights the higher 
energetic potential from these feedstocks. Although biomass feedstocks have lower 
energy density than that from conventional fossil fuels, due to lower C and higher 
O contents, their renewability and carbon neutrality offer significant advantages 
for sustainable pyrolysis [19]. 



K. O. Oladosu et al. / Portugaliae Electrochimica Acta 45 (2027) 179-200 

184 

Table 1: Proximate and ultimate analyses of biomass feedstocks on a dry basis. 
Analysis % wt CR SCB 

Proximate 

Moisture 7.92 5.91 
Fixed carbon  13.15 11.45 
Ash 6.37 5.55 
Volatile matter 72.56 77.09 

Ultimate 

LHV (MJ/kg) 12.5 18.2 
C 48.01 46.75 
H 6.4 6.6 
N 0.97 0.56 
O 44.62 46.09 

 

Experimental setup and operational procedures  
Biomass feedstocks were converted into biochar, bio-oil and biogas by 
thermochemical processes, using a locally available free-fall reactor. The reactor 
operated within a temperature range from 450 to 600 °C, with increments of 50 °C 
for each experimental run. N gas was supplied at a constant flow rate of 7 g/min 
throughout experiments [3] Mixed ratios of SCB and CR, along with 
corresponding temperatures used in the free-fall reactor, are presented in Table 2.  
 

Table 2: Composition of feedstocks and their temperatures for pyrolysis. 
Run SCB  

(%) 
 CR  
(%) 

Temperature  
(°C) 

1 100 0 450 
2 100 0 500 
3 100 0 550 
4 100 0 600 
5 75 25 450 
6 75 25 500 
7 75 25 550 
8 75 25 600 
9 50 50 450 
10 50 50 500 
11 50 50 550 
12 50 50 600 
13 25 75 450 
14 25 75 500 
15 25 75 550 
16 25 75 600 
17 0 100 450 
18 0 100 500 
19 0 100 550 
20 0 100 600 

 

In order to investigate pyrolysis of SCB and CR, and evaluate resulting bio-oil, char and 
gas yields, a total of 20 experimental runs were carried out. Pyrolysis occurred in the reactor 
at temperatures ranging from 450 to 600 °C, for 30 min, to generate vapours and solids. 
Vapours underwent rapid cooling and condensation in a condenser, held at roughly 5 °C, 
with the aid of an external chiller, and bio-oil was collected in a container. Bio-gas sensors 
that detect CH4, CO, O2 and CO were attached to the outlet hose of the assembly unit. Bio 
char and oil were subjected to proximate analysis, following ASTM E 1755-01 standard. 
C, H, N and S content in char and bio-oil were analysed using a Leco TruSpec Micro CHNS 
analyser for elemental evaluation. Heating value was determined by an oxygen bomb 
calorimeter. The free-fall reactor used for experimental runs is shown in Fig. 1. 
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Figure 1: Free-fall reactor components. 
 

Mathematical models for biofuel yields using MEP  
MEP belongs to the family of evolutionary artificial intelligence algorithms that 
use genetic strings to encode complex computer programs. It is designed to build 
mathematical expressions that reflect the specified database [35]. This 
evolutionary approach evolves numerous solutions in each chromosome, among 
which the optimal solution is selected. This is characterized as intrinsic parallelism, 
which is a distinct property of MEP [36].  
The population of computer programs is randomly created at the start of an MEP 
algorithm [37]. Each gene in an MEP program encoded terminal and function sets. 
In MEP, genes are organized as sequential expressions, and their number is 
determined by fixed chromosome length, which remains unchanged during 
computation process [38].  
Optimal computer programs for representing chromosomes are chosen by 
evaluating fitness values of various solutions [39]. A binary tournament approach 
is applied to select two parents for recombination with an even crossover 
probability. This recombination results in two individuals. The best individual in 
existing population replaces the worst one, after mutations occur. Best computer 
programs are created by repeating these processes iteratively, until the termination 
requirement is met [40]. 
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Multilinear regression  
Multilinear regression (MLR) is a basic statistical approach for predicting 
dependent variables via its linear association with various independent variables. 
This approach applies the concept of simple linear regression for models with 
multiple independent variables [41]. The relationship between multiple 
independent variables and dependent variables is presented in Eq. (1). MLR was 
considered in this study, due to its ability to generate mathematical models that 
show the relationship between dependent and independent variables. However, its 
weakness lies in its inability to solve complex and nonlinear problems [42]. 
 

𝑦 = 𝛽଴ + 𝛽ଵ𝑥ଵ + 𝛽ଶ𝑥ଶ + ⋯ + 𝛽௡𝑥௡ (1) 
 
Herein, MLR model was developed by using MATLAB (R2023b) as programming 
language to write codes. The training set was learned using 'fitlm' function. The 
learned model was applied to the testing set to generalize the model using 'predict' 
function. 
 
Results and discussion 
Product yields via experimental analysis 
Experimental data and corresponding biofuels for each run are presented in Table 
3.  

Table 3: Experimental data and products yields. 

Run SCB (%) 
CR 
(%) 

T 
(°C) 

BC yield  
(%) 

BO yield  
(%) 

 BG yield  
(%) 

1 100 0 450 25.1 28.2 46.7 
2 100 0 500 22.2 34.4 43.4 
3 100 0 550 18.6 28.7 52.7 
4 100 0 600 16.7 23.5 59.8 
5 75 25 450 22.6 31.2 46.2 
6 75 25 500 20.3 31.2 48.5 
7 75 25 550 17.6 33.3 49.1 
8 75 25 600 16.2 26.7 57.1 
9 50 50 450 20.1 32.8 47.1 
10 50 50 500 18.7 35.3 46 
11 50 50 550 16.2 36.2 47.6 
12 50 50 600 14.4 34.3 51.3 
13 25 75 450 20.6 27.4 52 
14 25 75 500 17.1 29.9 53 
15 25 75 550 15.9 29.9 54.2 
16 25 75 600 15.2 32.1 52.7 
17 0 100 450 15.2 34.2 50.6 
18 0 100 500 15.1 35.7 49.2 
19 0 100 550 14.5 34.8 50.7 
20 0 100 600 13.7 33.7 52.6 

 

Optimum yield of resulting bio-oil, at Run 11, was 36.2%. Corresponding yields 
of biochar and biogas, at 550 ºC, were 16.2 and 47.6%, respectively. Thus, a 50:50 
blend ratio of SCB and CR was most favourable for bio-oil production, at a 
temperature of 550 ºC, due to its higher yield. 
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Minimum, maximum, range, mean, median, standard deviation (SD), coefficient 
of variation (COV), kurtosis and skewness are presented in Table 4, for statistical 
analysis of data obtained during experimental runs.  
 

Table 4: Statistical analysis of data from experimental runs. 
Variables  SCB CR Temperature BC yield BO yield BG yield 
Minimum  0.00 0.00 450.00 13.70 23.50 43.40 
Maximum 100.00 100.00 600.00 25.10 36.20 59.80 
Range 100.00 100.00 150.00 11.40 12.70 16.40 
Mean 50.00 50.00 525.00 17.80 31.68 50.53 
Median 50.00 50.00 525.00 16.90 32.45 50.65 
SD 36.27 36.27 57.35 3.14 3.45 3.96 
COV 0.73 0.73 0.11 0.18 0.11 0.08 
Kurtosis -1.32 -1.32 -1.40 -0.12 -0.08 0.38 
Skewness 0.00 0.00 0.00 0.73 -0.69 0.44 

 

Proximate and ultimate analyses of biochar and bio-oils for base feedstocks, and 
proportion of feedstock (50:50) with higher yields of bio-oil are presented in Table 5. 
Elemental composition of bio-oils reveals that previous research [14, 19] values for C 
(53-65%), H (3.9-6.5%), N (0.4-0.8%) and O (32-38%) are consistent with the results 
of this study. Elemental compositions of biochar found in the studies of [16, 19, 36]. 
were C (45-65%), H (2-7%), N (0.3-2.0%) and O (4-35%), which were compatible 
with the findings of the present study. It is evident from results that O/C and H/C ratios 
of bio-oil are comparable, varying within 0.5 from 0.7, for O/C and from 0.06 to 0.2, 
for H/C. Bio-oil derived from feedstocks with a composition of 50:50 exhibits the 
lowest O/C ratio, and the highest heating value of 23.6 MJ/kg among other bio-oils. 
This lower O/C ratio indicates reduced O content, which improves bio-oil's calorific 
value or energy content [19]. Consequently, additional processing and refining, such 
as catalytic cracking and hydrodeoxygenation, are necessary to make the bio-oil 
suitable for use as a transportation fuel in conventional combustion engines. 
 

Table 5: Proximate and ultimate analysis of biofuel samples for composition with higher 
bio-oil yield, at 0:100 and 100:0 compositions. 

Composition  
of feedstock  
(SCB:CR) (%) 

Biofuel 
Proximate analysis Ultimate analysis 

AC 
 (%) 

FC  
(%) 

VM  
(%) 

C  
(%) 

H  
(%) 

N  
(%) 

O  
(%) 

O/C H/C 
HHV 
(MJ/kg) 

50-50 Biochar 9.34 21.06 67.52 62.83 4.04 1.30 31.53 0.50 0.064 20.7 
Bio-oil 1.85 10.51 67.87 57.82 5.02 1.01 33.05 0.57 0.087 23.6 

0-100 Biochar 7.77 15.07 4.77 59.01 5.45 1.70 33.84 0.57 0.107 18.3 
Bio-oil 1.28 7.17 4.77 55.98 6.32 1.72 35.98 0.64 0.113 22.4 

100-0 Biochar 11.62 18.45 65.11 57.57 5.40 1.18 34.49 0.60 0.009 19.5 
Bio-oil 0.22 8.86 65.62 52.45 6.74 1.94 35.45 0.67 0.129 21.3 

 

Effect of reactor temperature on the product yields 
The reactor temperature during pyrolysis process is a critical parameter that 
significantly influences product distribution of biochar, bio-oil and biogas. By 
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varying pyrolysis temperature, experimental runs aimed to explore effects on 
product yields and identify optimal temperature range for maximizing bio-oil 
production. Fig. 1 shows the relationship between product yields and temperature 
of each biomass composition. 
In Fig. 2(a), the effect of temperature on bio-oil yield, when using 100% SCB as 
feedstock, demonstrates that, as pyrolysis temperature increased, bio-oil yield 
exhibited a non-linear trend. At lower temperatures, bio-oil yield was relatively low, 
but it gradually increased with higher temperatures. Bio-oil yield reached its peak 
from 450 to 550 °C. Beyond this range, it started to decline, due to secondary reactions 
that favour production of char and gas. Also, there was an intriguing relationship 
between reactor temperature and biochar yield. As temperature increased, char yield 
displayed a declining trend. Higher temperatures promoted more extensive thermal 
breakdown of SCB components, leading to a reduction in the proportion of solid 
residue remaining as char. Moreover, as temperature increased, bio-gas yield revealed 
a consistent upward trend. Enhanced thermal decomposition of SCB components at 
higher temperatures resulted in higher biogas yield. 
The effect of temperature on bio-oil yield, for a blend of 75% SCB and 25% CR 
as feedstock, is illustrated in Fig. 2(b). The plot shows a similar trend as in Fig. 
2(a), with an increasing bio-oil yield as the temperature rises. The presence of CR 
in the blend probably enhances overall bio-oil yield compared to 100% SCB alone. 
Thermal decomposition of SCB and CR components at elevated temperatures 
resulted in reduced char formation. As the reactor temperature increased, biogas 
yields also showed a gradual rise.  
The impact of temperature on bio-oil yield, for a blend of 50% each SCB and CR 
as feedstock, is depicted in Fig. 2(c). Bio-oil yield follows a similar pattern as seen 
in previous graphs, but its optimal value of 36.2%, at 550 °C, was observed during 
pyrolysis process. Biochar yield decreased as temperature increased from 450 to 
600 °C, due to gradual disintegration of organic matter. Also, as temperature 
increased, biogas yield showed a significant increase, due to secondary cracking 
of char and pyrolysis vapour [43].  
Fig. 2(d) shows the effect of temperature on biofuel yield, for a blend of 25% SCB 
and 75% CR as feedstock. Bio-oil yield shows an increasing trend with rising 
temperature, reaching its peak at 600 °C. Biochar yield decreased with increasing 
reactor temperature. Data suggest that CR, with its unique chemical composition, 
significantly influenced char production, even at lower temperatures. Biogas yield 
increased with rising reactor temperature, until it reached a saturation point, 
resulting in a stable yield. In the case of 100% CR as feedstock, biochar and biogas 
yield decreased and increased, respectively, as the reactor’s temperature increased 
(Fig. 2(e)). This behaviour can be attributed to the specific chemical composition 
of CR, where certain components might undergo different thermal degradation 
mechanisms, leading to variations in char formation.  
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Figure 2: Effects of temperature on the yields of biochar, bio-oil and biogas for SCB and 
CR, at the ratios of (a)100:0, (b)75:25, (c) 50:50, (d) 25:75 and (e) 0:100. 
 

Results showed that bio-oil yields from co-pyrolysis of SCB and CR were higher 
than those obtained from pyrolysis of SCB or CR alone. Lower O/C ratio observed 
in 50:50 blend of feedstocks indicates reduced O content, which enhances energy 
content of bio-oil. These findings demonstrate that co-pyrolysis of SCB and CR 
improves biofuel’s yield and quality, due to synergistic effects. 
 
Gas compositions 
Changes in biomass composition had a relatively minor impact on percentage of 
biogas generated during pyrolysis. Across different compositions, biogas yield 
remained relatively stable, indicating that other factors, such as reactor temperature 
and heating rate, might play a more substantial role in determining gas production. 
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It is important to note that the presence of both SCB and CR in the feedstock blend 
contributed to the gas composition diversity. Varying the chemical composition of 
the two biomass components can lead to production of different gas species during 
pyrolysis, including CO, CO2, CH4 and other volatile organic compounds. Biogas 
yield was low, due to incomplete volatilization of biomass at lower temperatures. 
CO yield for 100:0, 50:50 and 0:100 of SCB and CR was 1.5, 1.2 and 1.4 ppm, 
respectively. Higher proportions of CH4 (Fig. 3) were produced, due to thermal 
decomposition of lignin and secondary tar cracking [44]. The 50:50 blend of SCB 
and CR yielded the higher composition of CH4 and the lowest composition of CO2, 
which potentially made it more suitable as a fuel [45]. 
 

 
Figure 3: Compositions of biogas for SCB and CR feedstocks at different proportions. 

 

MEP model  
In this study, MEPX (an open-source software) was used to develop MEP model 
that was built using parameters provided in Table 6, which were established by 
trial and error technique.  
 

Table 6: Parameters used for training MEP model. 
Parameters  Values 
Function set +, −,×,÷, ^ 
Terminal set 𝑥଴ , 𝑥ଵ , 𝑥ଶ, 𝑟𝑎𝑛𝑑 
Fitness function MSE 
Generation 2000 
Number of subpopulation  10 
Subpopulation size 1500 
Crossover rate 0.9 
Mutation rate 0.01 
Tournament size 2 
Code length 80 



K. O. Oladosu et al. / Portugaliae Electrochimica Acta 45 (2027) 179-200 

191 

This method was also applied to generate random numbers ranging from -10 to 
+10. This range was selected to increase diversification and reduce numerical 
volatility in mathematical modelling, which can cause overflow or underflow 
during simulation. Experimental data were divided into training and testing sets, 
at the ratio of 75:25, respectively. This was crucial to minimize overfitting, and 
ensure that the model effectively generalized to unseen data, as it was tested on 
data not utilized during training. To ensure better generalization, performance of 
training and testing datasets was analysed. 
Results of developed MEP model for estimating biofuel yields, which includes 
three input variables are presented in Eqs. (2-4). Built MEP models illustrate the 
correlation between input factors (temperature (𝑥଴) and proportion of SCB (x1) 
and CR (x1) and output variables (biochar, bio-oil and biogas yields). Developed 
MEP models revealed interpretable mathematical expressions that explicitly 
illustrate the relationship between input and output variables. These models can be 
used to predict biofuel yields for an environmentally sustainable and economically 
circular economy, resulting in cost and resource savings. The mathematical model 
for estimating biochar yields is presented in Eq. (2). Table 7 reveals error 
differences between experimental and MEP predicted data of biofuel yields. These 
values are in good agreement with experimental data.  
 

 

𝐵𝐶 = 𝑓 + 𝑒 − ቌ
𝑥ଶ

ଶ − 18735.6112 + 2𝑥଴ + 9.83806𝑥ଶ

9367.8056𝑥ଶ − ቀ𝑏൫𝑎𝑥ଶ + 2(𝑥ଵ − 𝑥଴)(9367.8056 − 𝑥଴ − 9.83806𝑥ଶ)൯ቁ
ቍ

+ ቆ
𝑥ଵ𝑥ଶ − 86.9494𝑥ଶ + 𝑥ଶ

ଶ − 18735.6112 + 2𝑥଴

9367.8056𝑥ଶ

ቇ 

(2) 

  

Table 7: Experimental data vs. MEP predicted data of biofuel yields. 

Biochar yield (%)  Bio-oil yield (%)  Biogas yield (%) 
Actual Predicted Error  Actual Predicted Error  Actual Predicted Error 

25.1 25.114 -0.014  28.2 28.180 0.020  46.7 46.673 0.027 
22.2 22.208 -0.008  34.4 34.477 -0.077  43.4 48.445 -5.045 
18.6 18.906 -0.306  28.7 28.691 0.009  52.7 50.682 2.018 
16.7 16.658 0.042  23.5 23.409 0.091  59.8 59.802 -0.002 
22.6 22.018 0.582  31.2 31.288 -0.088  46.2 46.430 -0.230 
20.3 20.302 -0.002  31.2 31.206 -0.006  48.5 48.204 0.296 
17.6 17.600 0.000  33.3 33.304 -0.004  49.1 50.432 -1.332 
16.2 16.193 0.007  26.7 27.048 -0.348  57.1 57.101 -0.001 
20.1 20.100 0.000  32.8 33.732 -0.932  47.1 44.943 2.157 
18.7 17.907 0.793  35.3 33.795 1.505  46.0 46.417 -0.417 
16.2 16.051 0.149  36.2 33.912 2.288  47.6 48.072 -0.472 
14.4 14.399 0.001  34.3 34.189 0.111  51.3 51.300 0.000 
20.6 20.609 -0.009  27.4 27.529 -0.129  52.0 52.000 0.000 
15.9 16.005 -0.105  29.9 29.808 0.092  53.0 52.629 0.371 
15.2 15.213 -0.013  29.9 30.481 -0.581  54.2 53.636 0.564 
15.2 16.197 -0.997  32.1 32.071 0.029  52.7 55.359 -2.659 
15.1 15.094 0.006  34.2 34.246 -0.046  50.6 47.759 2.841 
14.5 14.455 0.045  35.7 34.348 1.352  49.2 49.218 -0.018 
17.1 17.097 0.003  34.8 34.430 0.370  50.7 50.698 0.002 
13.7 13.743 -0.043  33.7 34.495 -0.795  52.6 52.264 0.336 
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where 
 

𝑎 =
(𝑥ଵ − 𝑥଴)(9367.8056 − 𝑥଴ − 9.83806𝑥ଶ) − 𝑥ଵ𝑥ଶ − 𝑥ଶ

ଶ + 9367.8056 − 𝑥଴ − 9.83806𝑥ଶ

𝑥ଶ

 (2.1) 
  

𝑏 =
2(𝑥ଵ − 𝑥଴)(9367.8056 − 𝑥଴ − 9.83806𝑥ଶ)ଶ

𝑥ଶ(𝑥଴𝑥ଵ𝑥ଶ + 9464.593𝑥ଶ − 9.83806𝑥ଶ
ଶ)

 (2.2) 
  

𝑐 =
𝑥ଶ

ଶ(𝑥଴ + 𝑥଴𝑥ଵ + 96.7874)

6.90283(9357.96754 − 𝑥଴)(9357.96754 − 𝑥଴ − 9.83806𝑥ଶ)

+
𝑏൫𝑎𝑥ଶ + 2(𝑥ଵ − 𝑥௢)(9367.8056 − 𝑥଴ − 9.83806𝑥ଶ)൯

𝑥ଶ

 

 

(2.3) 

𝑑 =
9367.8056 − 𝑥଴ − 𝑏𝑥ଶ

𝑥ଶ

−
𝑥଴𝑥ଵ𝑥ଶ

6.90283𝑥ଶ − 𝑥ଶ
ଶ − 2(𝑥ଵ − 𝑥଴)(9367.8056 − 𝑥଴ − 9.83806𝑥ଶ)

 (2.4) 
 
 

 

𝑒 =
ଶ௫బ௫మା௔(ଽଷ଺଻.଼଴ହ଺ି௫బି௕௫మ)

௔௫మ
+

ௗ௫మ

௕௫మା(௫భି௫బ)(ଽଷ଺଻.଼଴ହ଺ି௫బିଽ.଼ଷ଼଴଺௫మ)ା௫మ
మାଽ.଼ଷ଼଴଺௫మା௫మ(௫భି௫బ)

  
(2.5) 

  
𝑓 =

𝑥ଶ
ଶ − 9367.8056 + 𝑥଴ + 9.83806𝑥ଶ + 2(𝑥ଵ − 𝑥଴)(9367.805 − 𝑥଴ − 9.83806𝑥ଶ)

(𝑐 − 𝑥ଵ)(𝑥ଶ(𝑥ଵ − 𝑥଴) + 9367.8056 − 𝑥଴)
 (2.6) 

 
Bio-oil yield, as developed from MEP model, is formulated as presented in Eq. (3).  
 

𝐵𝑂 = −2.953869௫బ + 31.9866 − 0.79365௫భ(𝑎ଵ) +
2𝑥ଵ + 69.6289

4.48861(11.31134𝑥଴ + 2𝑥ଵ − 𝑥ଶ)
+

31.9866 − 𝑥଴

𝑏ଵ

+
4.48861 + 𝑥ଵ + 𝑎ଵ(0.79365௫భ)

𝑐ଵ

 

(3) 
 

where  

𝑎ଵ =
31.9866 + 𝑥ଶ

𝑥଴
ௗభ + 6.65567𝑥଴ − 𝑥ଶ + 2𝑥ଵ

+
2𝑥ଵ + 69.6289

11.31134𝑥଴ + 2𝑥ଵ − 𝑥ଶ

 (3.1) 
  

𝑏ଵ = 4.65567𝑥଴ − 𝑥ଶ − 2𝑥ଵ −
𝑥ଵ(31.9866 + 𝑥ଶ)

𝑥଴
ௗభ + 6.65567𝑥଴ − 𝑥ଶ + 2𝑥ଵ

 (3.2) 
  

𝑐ଵ = 13.31134𝑥଴ + 4𝑥ଵ − 𝑥ଶ +
𝑥ଵ(31.9866 + 𝑥ଶ)

𝑥଴
ௗభ + 6.65567𝑥଴ − 𝑥ଶ + 2𝑥ଵ

 (3.3) 
  

𝑑ଵ =
5.65567𝑥଴ − 𝑥ଶ

31.9866 − 𝑥ଵ

 (3.4) 
  

The mathematical model for biogas yields, as formulated from MEP model, is 
provided in Eq. (4).  
 

𝐵𝐺 =
36.2993𝑥ଶ

(𝑥ଵ − 𝑏ଶ)(𝑥ଶ − 2.88776)
+ 33.3566 +

𝑥ଶ − 8.91265

33.3566
−

𝑎ଶ

36.2993𝑏ଶ

−
22.1021𝑥଴ + 133.4266 + 23.1021𝑎ଶ

23.1021(−6.02489𝑥ଵ + 𝑥ଶ − 5.77552𝑥଴ − 33.3566)
 

(4) 

 
where 

 

𝑎ଶ = ቆ
𝑥଴𝑥ଵ(𝑥ଶ − 2.88776)

66.7133𝑥ଶ

ቇ

଴.଴ଵହ௫బ

 (4.1) 
 

  

𝑏ଶ = 47.71303 −
𝑥ଶ − 8.91265

33.3566
+

36.2993𝑥ଶ

𝑥ଶ − 2.88776
 (4.2) 

Performance of MEP and MLR models  
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MEP model was validated via comparative analysis with MLR, in terms of 
evaluation metrics. MLR model developed three different mathematical equations 
for biochar, bio-oil and biogas yields, as presented in Eqs. (5-7).  
 

𝐵𝐶 = 0.41874𝑥ଵ + 0.36845𝑥ଶ − 0.040511𝑥ଷ (5) 
  
  𝐵𝑂 = 0.34085𝑥ଵ + 0.38856𝑥ଶ − 0.0092189𝑥ଷ (6) 
  
 

𝐵𝐺 = 0.24041𝑥ଵ + 0.243𝑥ଶ + 0.04973𝑥ଷ (7) 
 

The performance of developed models for biofuel is determined in terms of 
accuracy and effectiveness using root mean square error (RMSE- Eq. 8), mean 
absolute error (MAE- Eq. 9) and mean absolute percentage error (MAPE) (Eq. 10). 
Performance of developed MEP models is presented in Table 8.  
 

Table 8: Evaluation metrics for MEP and MLR models. 

Model Yields 
RMSE MAE MAPE (%) 

Training Testing Training Testing Training Testing 

MEP 

Biochar 0.186 1.095 0.112 0.867 0.608 5.256 

Bio-oil  0.645 1.025 0.423 0.505 1.277 1.416 

Biogas  1.626 1.585 0.857 1.186 1.817 2.327 

MLR 

Biochar 0.875 1.674 0.722 1.249 4.176 7.706 

Bio-oil  3.090 2.583 2.490 1.769 8.327 5.323 

Biogas  3.045 3.091 2.392 2.667 4.680 5.289 

 

𝑅𝑀𝑆𝐸 = ඩ
1

𝑁
෍(𝑦௜ − 𝑦ప̀)

ଶ

ே

௜ୀଵ

  (8) 

𝑀𝐴𝐸 =
1

𝑁
෍|𝑦௜ − 𝑦ప̀|

ே

௜ୀଵ

  (9) 

𝑀𝐴𝑃𝐸 =
100

𝑁
෍ ฬ

𝑦௜ − 𝑦ప̀

𝑦௜
ฬ

ே

௜ୀଵ

  (10) 

 
where ȳ is mean value of the actual values of the biofuel yields, yi is actual value, 
`y is predicted value and N is total number of data points. where, 𝑦ത is the actual 
value, 𝑦௜ is the actual value, 𝑦ప̀ is the predicted value, and N is the total number of 
data points.  R2 plots for MEP and MLR models in terms of training and testing set for 
biochar yields, bio-oil and biogas are presented in Fig. 4. R2 values for training and 
testing set of MEP model for biochar yields are 0.997 and 0.974, respectively. R2 values 
for training and testing set of MLR model for biochar yields are 0.925 and 0.820, 
respectively. 
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Figure 4: R2 plots of MEP and MLR models for - (a) training set of biochar yield, (b) 
testing set of biochar yield, (c) training set of bio-oil yield, (d) testing set of bio-oil yield, 
(e) training set of biogas yield and (f) testing set of biogas yield. 
 

Parametric and sensitivity analyses 
Parametric analysis was conducted in this study to determine the relationship 
between each input variable and output variables. This was done by varying one 
of the input variables within its minimum and maximum values, and keeping other 
input variables constant at their respective average value, as indicated in Table 4. 
This process was applied to each input variable, and plots that revealed the 
relationship for each input variable and output variables are presented in Fig. 5. 
Increasing pyrolysis temperature from 450 to 600ௗ°C results in reduced biochar 
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yield (Fig. 5(a)), due to enhanced thermal degradation of biomass and diminished 
solid residue formation [24]. In contrast, bio-oil and biogas yields increase as 
elevated temperatures favour breakdown of cellulose and hemicellulose into 
condensable volatiles and permanent gases. Lignin, which decomposes over a 
broader temperature range, contributes more to char formation at lower 
temperatures [19, 25].  
 

 
 

 
Figure 5: Relationship between biofuel yields and (a) pyrolysis temperature, (b) 
composition of SCB and (c) content of CR. 
 

Figs. 5b and 5c reveal that increasing SCB proportion enhances bio-oil and biochar 
yields, attributable to SCB’s higher volatile matter and O content, which promote 
devolatilization and oxygenated species generation. In contrast, CR, with higher C 
and ash content, favours biochar formation through solid residue stabilization and 
catalytic ash effects. Observed rise in biogas yield was linked to secondary 
cracking reactions of pyrolysis vapours and char [43]. Notably, a 50:50 SCB–CR 
blend yielded optimal bio-oil output, aligning well with experimental data. 
A sensitivity analysis was conducted to enhance understanding of how temperature 
and composition of SCB and CR affect predicted yields of biofuel. Eqs. (11) and 
(12) are applied to ascertain relative significance and contribution of every input 
variable in developed MEP model [42]. 
 

𝐼௜ =
𝑛௜

∑ 𝑛௜
ே
௜ୀଵ

× 100 (11) 
 

𝑛௜ = 𝑓௠௔௫(𝑥௜) − 𝑓௠௜௡(𝑥௜) (12) 
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where n is number of input variables; fmax(xi) and fmin(xi) are maximum and 
minimum values of predicted values of biofuel yields for input variable i, 
respectively; ni was independently calculated for each input variable, when other 
input variables are constant at their individual average values; Ii is relative 
significance of each input variable in developed MEP model.  
Fig. 6 further confirms that temperature has most significant influence on product 
distribution, especially for biochar and bio-oil.  
 

 
Figure 6: Relative importance of temperature and composition of SCB and CR in 
developed MEP model. 
 
Relative importance of SCB and CR composition is more distinct for biogas yield, 
which is influenced by decomposition of light volatiles and non-condensable gases 
like CO, CO2 and CH4 formed during cracking of tars and oxygenates [44]. Co-
pyrolysis of SCB and CR also influences biofuel’s yield and quality. SCB, with its 
high lignin and fibre content, provides structural integrity necessary for effective 
thermal degradation, while CR, which typically contains higher amounts of starch 
and lower lignin content, can promote rapid devolatilization [7, 9]. Combination 
of these characteristics facilitates a more uniform heat distribution, and can 
mitigate issues such as incomplete pyrolysis or excessive char formation that are 
sometimes observed when processing single feedstock [44]. Consequently, co-
pyrolysis of SCB and CR produced bio-oils with a more balanced composition and 
a higher energy density, as interaction between feedstocks reduced formation of 
undesirable by-products. Integration of experimental data with modelling 
approaches underscores the feasibility of optimizing process parameters for large-
scale applications. 
 
Conclusions 
This study examined biofuel production from SCB and CR in a free-fall reactor. 
Optimal bio-oil yield of 36.2%, with a heating value of 23.6 MJ/kg, was achieved 
at a 50:50 SCB-to-CR blend ratio, and with a temperature of 550°C, while 
corresponding biochar and biogas yields were 16.2% and 47.6%, respectively. 
MEP model proved highly accurate in predicting biofuel yields, with R² values of 
0.974, 0.917 and 0.774 for biochar, bio-oil and biogas, respectively, outperforming 
MLR model, which had much lower R² values of 0.820, 0.197 and 0.090. Co-
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pyrolysis of SCB and CR enhanced biofuel yields and quality, due to synergistic 
effects and parametric analysis, confirmed that temperature and feedstock 
composition significantly impact biofuel yields. These results demonstrate the 
potential of SCB and CR as sustainable biofuel feedstocks, and validate the 
effectiveness of MEP model for yield prediction. 
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