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Abstract 
Different Ct of KBE from its leaves were used to study its effect on MS corrosion 
resistance. Electrochemical methods such as PDP, EIS and WL tests were herein used. 
Experimental results showed that, with higher Ct of KB, its IE(%) increased. The highest 
corrosion IE(%) of 98.41, at 1600 ppm KBE in a 0.5 M H2SO4 solution, was obtained. The 
inhibitor’s adsorption onto the MS surface was excellent, since it created a monolayer. 
KBE´s adsorption mechanism obeyed Langmuir’s isotherm. SEM analysis established the 
development of a protective layer on the MS surface.  
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Introduction 
For a long time, steels and its alloys have been used in several industries for various 
purposes, such as pipelines. Every year, worldwide economic losses caused by 
corrosion amount to 75,000 billion dollars, which depletes world’s GDP of 3-4% 
[1]. Metals corroding process may be prevented with the aid of CI [2, 3], which 
hinder metals dissolution by mineral acids attacks. Several types of un-eco friendly 
and toxic CI are used in industries, some of which are inorganic and organic 
synthesized substances. Nowadays, green and nontoxic CI are in high demand.  
Various industries employ acids in the process of cleaning pipes and oil from surfaces 
[4-6]. CI usually behaves as adsorbents, which means they adsorb onto metals 
surfaces and form a chemical bond. However, there are some phenomena where they 
are attracted by metals, originating physical adsorption. Different plant parts are used 
to prepare green CI extracts, since they have good ability to cover metals surfaces, 
because their photochemical components possess aromatic structures with hetero 
atoms. Generally, CI added to AE has organic molecules that contain hetero atoms as 
prime chemical constituents. In several studies, the extracts of many plants have been 
used as efficient CI in various AE, such as: walnut green (Juglans regia L.) husk [7]; 

                                                           
The abbreviations and symbols definition lists are in pages 39-40. 
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Mish Gush [8], Stachys byzantine [9], Thymus vulgaris [10] and Aloysia citrodora 
[11] leaves; Punica granatum peel on SS-410 [12]; Ammi visnaga (which was also 
used as friendly antioxidant) [13]; Allamanda cathartica [14], and Senggani 
(Melastoma candidum D. don) [15] leaves; and iodide ions and Xanthium strumarium 
leaves [16]. 
KB is a deciduous flowering plant with diverse genera, of the Acanthaceae family. It 
is an Indian routine medicinal plant, which is used in various treatments of ailments. 
Its leaves contain various type of photochemical [17, 18], such as saponins, 
flavonoids and glycosides.  
The novelty of the present work was to employ KBE as a green CI for MS in H2SO4. 
Employed electrochemical techniques were EIS, PDP and LPR, to test whether KBE 
behaved as a mixed-type CI. KB adsorption onto the MS surface in H2SO4 followed 
Langmuir’s isotherm. 
 
Materials and methods 
KBE preparation  
KBE was obtained via maceration process from 80% ethanol/water system. Then, it 
was filtered. The residues were removed by a solvent and eliminated via rotary 
evaporator. A concentrated blackish solid was obtained. 
 
WL method 
WL is an extensively used and predictable method for estimating CR. The prepared blank 
solution was made of geared 0.5 M H2SO4 (analytical reagent) and distilled water. CR values 
of MS were evaluated at different T (298, 308, 318 and 328 K), via WL method, with 
different Ct of KBE in the test solution, for 20 h. MS samples (1 x 1 x 1 cm) had the chemical 
composition by wt% of C-0.1, Si-0.033, Mn-0.335, Al-0.057, Cu-0.0476, Cr-0.02 and 
balance Fe. For 20 h, the MS samples were entirely immersed in a conical flask of 250 cm3 

with a 0.5 M H2SO4 solution. Then, they were taken from the test solutions, and cleaned with 
acetone. 
 
Instrumentation (electrochemical) measurements 
Selected Ct ranges of KBE solutions for the current study were 400, 800, 1200 and 
1600 ppm. They were diluted in 0.5 M H2SO4, which was also used as blank. All 
steps of this experimentation and measurement employed scientific programs have 
been delineated elsewhere [19-22]. The electrochemical potentiostat study was 
performed by CH Instruments, Inc.CHI760c. The SR adopted in PDP study was 
1.0 mV/s-1. EIS were recorded with an amplitude of 5 mV peak to peak, at OCP, 
with signals/disturbance in the frequency range from 105 to 10-2 Hz. 
 
Study of surface characterization 
MS coupons (1 × 1 cm × 2 mm) were used for the surface characterization study. 
Polished MS coupons were subjected to corrosion, in H2SO4, at the Ct range of KBE 
from 400 to 1600 ppm, to monitor IE(%), for 10 h. SEM studies were performed by 
Jeol Japan, Model No. JSM-6610 LV instrument. 
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GC-MS study 
GC-MS study was performed with a Shimadzu GC–MS-QP 2010 Ultra fitted with an 
RTX-5 MS (30 m x 0.25 mm x 0.25 µm) capillary column. He gas was used as 
transporter, with the flow rate of 1.21 mL /min. The initial oven T was 60 ºC, for two 
min, and then it was increased to 260 ºC. The 2 mL sample was injected in split less 
mode, and total IT was 60 min. The ions source was heated at 220 ºC, and electron-
impact ionization technique was used at a potential of 70 eV. Mass spectra of KBE with 
crude ethanol showed compounds identified from NIST and WILEY libraries, and their 
assessment agreed with those reported in literature [23]. 
 
Results and discussion  
WL calculation  
Data calculated via WL are listed in Table 1.  
 

Table 1: WL parameters for MS, for 20 h IT in 0.5 M H2SO4 without and with KBE at 
various Ct and T (298-328 K). 

T 
Ct 

(ppm) 
WL 
(mg) 

CR 
(mg/cm-2/h-1) 

IE% 
SC 
(θ) 

 298 K 

Blank 0.4979 0.0277 - - 
400 0.0471 0.0026 90.61 0.9061 
800 0.0362 0.0016 94.22 0.9422 
1200 0.0202 0.0011 96.02 0.9602 
1600 0.0092 0.0005 98.19 0.9819 

308 K 

Blank 0.6187 0.0345 - - 
400 0.0599 0.0034 90.14 0.9014 
800 0.0395 0.0022 93.62 0.9362 
1200 0.0260 0.0014 95.94 0.9594 
1600 0.0175 0.0009 97.39 0.9739 

318 K 

Blank 0.8261 0.0460 - - 
400 0.0872 0.0048 89.56 0.8956 
800 0.0710 0.0039 91.52 0.9152 
1200 0.0598 0.0033 92.82 0.9282 
1600 0.0361 0.0020 95.65 0.9565 

328 K 

Blank 1.0471 0.0584 - - 
400 0.2725 0.0152 73.97 0.7397 
800 0.1681 0.0093 84.07 0.8407 
1200 0.1051 0.0058 90.06 0.9006 
1600 0.0705 0.0039 93.32 0.9332 

 

Due to MS corrosion in a 0.5 M H2SO4 solution, its WL was examined, with various 
Ct of KBE, at several T (298, 308, 318 and 328 K). CR (mm/yr-1) was calculated 
using eq. (1).  
 
  (1)  

 
where W is WL, t is IT,  is density (7.85 g/cm3) and K denotes corrosion constant 
(8.76 x 104) [24].  and  are CR of MS in H2SO4 without and with KBE, of 
which effect on CR is shown in Fig. 1.  
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Figure 1: CR values with different Ct of KBE at T from 298 to 318 K. 
 

With higher Ct of KBE, CR decreased, as shown in Fig. 2. The inhibitor’s molecules 
were adsorbed onto the MS surface, which hindered CR. The lower the Ct from 
KBE, the lower the IE(%). 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Variation in IE(%)with various Ct of KBE, at T from 298 to 328 K. 
 

From Table 1, maximum IE(%) of KBE was 98.19, which was achieved at a Ct of 
1600 ppm. The inhibitor’s IE(%) and SC (θ) values were calculated via eqs. (2) and 
(3), respectively.  
 

  (2) 

 
  (3) 
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Polarization investigations  
Galvanostatic study and LRP 
Polarization analyses were carried out thorough determination of KBE inhibition 
mechanism, at 298 K, using different Ct. From the experimental study, Tafel curve 
plot is shown in Fig. 3, and polarization is represented by Table 2. Improvement in 
corrosion IE(%) via icorr was calculated by Eq. (4).  
 
  (4) 

 
where Iinh and Iacid are Iinh values without and with KBE in a 0.5 M H2SO4 solution, 
respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Galvanostatic polarization curves for MS in a 0.5 M H2SO4 solution with various 
Ct of KBE, at 298 K. 
 

Table 2: Tafel and LPR parameters for MS in a 0.5 M H2SO4 solution with different Ct of 
KBE, at 298 K. 

Ct 
(ppm) 

Icorr 
(A/cm2) 

Ecorr 
(mV per SCE) 

IE% 
Tafel data LPR data 

c 
(mV/dec) 

a 
(mV/dec) 

Rp 
(Ω/cm2) 

LPR% 

Blank 2.560 0.494 - 53.81 51.47 1.6 - 
400 0.2165 0.487 91.54 73.45 98.54 15.4 89.57 
800 0.1803 0.493 92.95 67.30 86.80 18.7 91.44 
1200 0.09865 0.499 96.14 70.52 85.25 31.3 94.88 
1600 0.04067 0.538 98.41 91.01 45.38 78.4 97.95 

 

CI action in 0.5 M H2SO4 improved with higher Ct of KBE. Ecorr experimental 
values’ trend means that the inhibitor is an anti-corrosion catalyst of mixed type. 
With KBE, a and c noticeably changed in an irregular manner, due to the 
inhibition process that implied HER and MS dissolution. a was mainly slower than 
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c, phenomenon that may be temporary, as indicated by the suppressed anodic 
reaction of MS oxidation/dissolution via KBE action. Moreover, c differed, 
although slightly, and the inhibitor suppressed HER. Both reactions were limited by 
KBE-Fe complexes ([Fe-atoms-KBE]ads) and [Fe- atoms- KBE -OH]ads) on the 
substrate’s surface, which led to complete active sites coverage [25]. LPR values 
specify KBE’s adsorption onto the MS surface by the development of a physical 
barrier with a non-conducting nature. 
 
EIS measurements 
EIS experiments were performed to assess inter facial changes at the MS surface in 
0.5 M H2SO4 with and without KBE, at 298 K. This study was used as a separate 
and additional method to properly measure IE(%), mechanistic and kinetic data of 
the electrochemical system under examination. Resulting Bode and Nyquist plots 
are shown in Figs. 4 and 5, and their parameters are specified in Table 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Nyquist’s plots for MS in a 0.5 M H2SO4 solution without and with KBE at 
various Ct, at 298 K. 
 

The MS’s surface irregularity and CI mechanism via single charge transfer was 
considered through the single semi-circle in the Nyquist plot, for all Ct of KBE in 
H2SO4 [26]. The diameter in Rct remarkable rose with increased Ct of the inhibitor, 
which confirmed this mechanism. CR of MS decreased, after KBE created an 
insoluble protective layer. By using Eq. (5), IE(%) values were calculated [27].  
 

  (5) 

 
where Rct and  are Rct values with and without KBE, respectively.   
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Figure 5: Bode’s plot for MS in a 0.5 M H2SO4 solution without and with KBE in various 
Ct, at 298 K. 
 

Table 3: Parameters of impedance for MS in 0.5 M H2SO4 without and with KBE, in 
various Ct, at 298 K. 

Ct 
(ppm) 

Rs 
(Ω/cm2) 

n 
Q 
(Ω-1/cm-2 Sn) 

Rct 
(Ω/cm2) 

Fmax 
(Hz) 

Cdl 
(F/cm-2) 

IE% 

Blank 1.4 0.7105 0.876 1.720 6.50 0.14229  
400 1.2 08528 0.481 30.19 14.31 0.03682 94.38 
800 1.3 08974 0.116 70.31 17.28 0.001312 97.55 
1200 1.4 0.9296 0.0424 75.37 23.39 0.0007996 97.71 
1600 1.1 0.9510 0.016 155.77 69.75 0.0001464 98.89 

 

Cdl was measured by using Eq. (6), of which values increased with higher Ct of 
KBE. 
 
  (6) 

 
where fmax is maxima frequency via Nyquist curve.   
Eq. (7) represents an inverse relation between Cdl and thickness (d) of the shielding 
layer. Experimental parameters are listed in Table 3, which shows a decrease in Cdl 

value with higher Ct of KBE. This means that the protecting layer thickness 
increased.  
 
  (7) 
 
where A is the surface area of the MS substrate, Ɛ and Ɛo are constants dielectric for 
the vacuum permittivity with the medium and d is the shielding layer thickness. 
The significance of single time constant is illustrated by Bode graphs of Fig. 5, for 
each Ct of KBE. The phase angle approached to 900, which was further confirmed 
by stronger homogeneous MS surface substrate [28]. Other parameters include (n) 
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values phase shift from Eq. (8), which are nearer to unity with KBE addition, and 
associated with less heterogeneity on the MS surface without inhibitor [29-31]. 
 
  (8) 
 
where Q is CPE, 𝜔 is angular frequency, which is an imaginary part with the 
maximum value of electrochemical impedance plot and fZim−max is maxima 
frequencies. 
 
Study of T’s kinetics 
Adsorption isotherm 
The relation between KBE’s molecules and the MS’s surface was studied via the 
adsorption mechanism characteristics, employing various isotherms. Experimental 
data established that the relation with best fit was for Langmuir’s adsorption 
isotherm, with linearR2values (0.999 - 1) obtained by the plotting graph C/θ vs. Ct, 
at different T, which generated straight lines [32-37] (Fig. 6).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 6: Langmuir’s isotherm for KBE (at different Ct) adsorption onto MS in a 
0.5 M H2SO4 solution, at various T. 
 

From Eq. (9), Langmuir’s isotherm was calculated. It depends on the Ct of KBE’s 
molecules in the H2SO4 solution, which have performed SC (θ) of MS.  
 
  (9) 

 
where Cinh is Ct of KBE (Fig. 7). R2 value had a recognized major role on the 
relations between KBE’s molecules adsorbed on to the MS surface substrate, which 
were linked on to cathodic and anodic reactive sites. In the investigated system, the 
additive molecules blankets on cathodic and anodic sites were formed by the 
adsorption mechanism and the development of a multi-molecular layer that obeyed 
Langmuir’s isotherm. 
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Figure 7: Graph (logKads versus 1/T) ofΔG°adsKBE on the MSsurface. 

 

Kads values were employed to determine ΔG◦
ads via Eq. (10), indicating KBE 

strong adsorption onto the MS surface. The adsorption was strong, since more 
hetero atoms with lone pair and aromatic rings were delocalized from pi electrons 
in KBE’s molecules. According to [38], ΔG◦

ads values closer to -40 kJ/mol-1 
indicate chemisorption, and those nearer to -20 kJ/mol-1 show physisorption. For 
this study, calculated values and parameters are listed in Table 4, which were 
near to -40 kJ/mol-1, at different T, revealing a chemisorption process, which 
indicates its spontaneous nature. 
 

Table 4: Thermodynamic parameters for KBE’s adsorption onto the MS surface in 
0.5 M H2SO4, at different T. 

T   Log K R2 
ΔHads 
(kJ/mol) 

ΔSads 
(j/mol/K) 

ΔGads 
(kJ/mol) 

298 6.29 0.9997 -51.65 -49.22 -45.83 
308 5.31 0.9999   -41.59 
318 5.30 0.9993   -42.88 
328 4.79 0.9997   -41.02 

  
 (10) 

 
where R is universal gas constant. The water’s molecule Ct was 55.5 mol/L. 
In the present study, obtained ΔS°ads value was -49.22 kJ/mol, which suggested that 
the arrangement of KBE’s molecules on the MS surface followed the process of 
exothermic adsorption [39]. 
 
Ea parameter and T effect  
The study of T effect, via WL calculations, on MS (coupon) in 0.5 M H2SO4with 
different Ct of KBE, is listed in Table 1, which shows CR, SC (θ) and IE(%)values. 
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In the solution without KBE, CR of MS exponentially rose from 298 to 328 K, 
whereas with the inhibitor, it slightly decreased. IE(%) declined with T rise from 
298 to 328 K. By using Arrhenius equation (11), Ea was determined [40]. 
 
 log  = logA  -  (11) 
 
where A is pre-exponential factor of Arrhenius. The plot derived by Arrhenius and 
Eyring equations is shown in Fig. 8. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Arrhenius plots of Log CR against T-1 for MS in a 0.5 M H2SO4 solution 
containing different Ct of KBE. 
 

Calculated values for ΔH°ads and ΔS°ads are listed in Table 5. Ea values were 
calculated via a straight line of the slope (Ea = slope x 2.303 R2), resulting from 
Arrhenius plot log  vs. 1/T curve. Ea observed value for the systems with KBE were 
larger than those without it, which suggests that the adsorption process was 
chemical. ΔH°ads and ΔS°ads values were calculated by using Eq. (12).  
 

  (12) 
 
where N is Avogadro number and h is Plank constant [41].  
 

Table 5: Ea parameters for MS in 0.5 M H2SO4 with and without KBE in different Ct. 
Ct 

(ppm) 
Ea 

(kJ/mol) 
ΔHºads 

(kJ/mol) 
ΔSºads 

(j/mol/K) 
1600 56.49 54.24 -110.21 
1200 47.30 44.98 -74.11 
800 47.25 44.25 -73.98 
400 45.37 42.81 -61.29 
Blank 20.44 19.11 -120.87 
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Through the adsorption route, reactants molecules were improved to activate the 
complex, in which the phyto chemicals disordering took place. Δ𝑆°ads negative 
values reveal the associative mechanism that marks the progress of an activated 
complex, of which step was rate determining [42]. ΔS°ads positive values correspond 
to the endothermicity of MS’s dissolution reaction. They were higher with KBE, 
which means that the energy barrier for MS dissolution reaction was drastically 
improved by the CI in H2SO4 [23]. 
 
Morphological investigation  
SEM 
The micrographs (Figs. 9a-9d) obtained via SEM in a 0.5 M H2SO4 solution with out 
and with KBE (1600 and 400 ppm) show the changes caused by the corrosion 
process.  
 

Figure 9: SEM micrographs with magnification 1000 (1) 3000 of MS surfaces - (a) bare; 
with 0.5 M H2SO4-(b) blank, (c)with 1600 ppm KBE, and (d) with 1200 ppm KBE. 
 

The MS surface in 0.5 M H2SO4 was damaged, as shown in Fig 9 (b). Its morphology 
appreciably improved (Fig. 9c) with the addition of 1600 ppm KBE, and less damages 
occurred compared to the sample with blank 0.5 M H2SO4. The MS surface roughness 
level was reduced when the Ct of KBE was increased from 400 to 1600 ppm. This 
enhancement in MS morphology was due to the excellent protective layer [43, 44] 
formed by KBE on its surface, which was responsible for CI.  
 
GC-MS analysis 
In the current investigation, GC-MS identified 15 compounds among the 45 
constituents recognized in MS immersed in KBE with ethanol, as shown in Fig.10.  
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3,500,000 

 

Figure 10: GC-MS of MS and KBE. 
 

Table 6 characterizes the identified compounds, such as their MF, MW, IT, PA and 
SI. The phytochemical examination of KBE exposed the presence of heterocyclic 
organic compounds that can be largely classified as sterols, long chain alkenes 
(cyclic), long chain fatty acids and purine nucleosides. The majority of detected 
phytocomponents have been reported as effective green CI [45-52]. The existence of 
multiple bonds with electrons, hetero atoms and some other substances in these 
organic compounds provides for excellent CI properties [53], due to the synergy 
among all of them. 
 

Table 6: Phytocomponents detected in KBE. 
S. no Compounds MF MW IT PA% SI 

1 1,2,4-trimethylbenzene C9H12 120 5.885 0.98 93 
2 Cyclopropylbenzene C9H10 118 6.851 1.28 93 
3 3a,4,5,6,7,7a-hexahydro-4,7-methanoindene C10H14 134 7.439 9.22 96 
4 4,7-Methano-1H-indene, octahydro- C10H16 136 7.885 2.03 95 
5 Tricyclo[5.2.1.0(2,6)]dec-4-ene, 4-methyl C11H16 148 8.627 2.49 89 
6 3H-1,2,4-triazol-3-one, 4-amino-2,4-dihydro-2-methyl-5-phenyl C9H10N4O 190 14.690 0.74 75 
7 Decanoic acid, methyl ester C11H22O2 186 18.251 0.88 87 
8 2-Hexadecen-1-ol, 3,7,11,15-tetramethyl-, [R] C20H40O 296 20.056 10.61 97 
9 Bis(trimethylsilyl) ether of 1,4-anhydro-3-deoxypentitol C11H26O3Si2 262 25.511 0.84 59 
10 D-erythro-pentopyranose, 2-deoxy-1,3,4-tris-o-(trimethylsilyl) C14H34O4Si3 350 26.933 1.23 57 
11 5-Hydroxymethyl-2,2,5-trimethyl-1,3-dioxane, C11H24O3Si 232 26.332 0.76 56 
12 Cis-4-Trimethylsilyloxy-cyclohexyl(trimethylsilyl)carboxy C13H28O3Si2 288 28.086 0.75 50 
13 (1-butoxybutoxy)trimethylsilane C11H26O2Si 218 13.590 0.90 74 
14 Phytol, acetate C22H42O2 338 20.562 5.95 76 
15 D-Erythro-Pentofuranose, 2-deoxy-1,3,5-tris-O-(trimethylsilyl) C14H34O4Si3 350 27.051 2.02 55 



O. S. Yadav et al. / Portugaliae Electrochimica Acta 44 (2026) 27-45 

39 

Proposed mechanism of CI 
KBE protected MS against corrosion in a 0.5 M H2SO4 solution by the adsorption 
process. CI mechanism is based on molecules interactions of acceptor and donor 
electrons between KBE and unoccupied d- orbital’s on the MS surface. In other 
words, KBE’s hetero atoms interacted with the vacant d-orbital of the MS surface. 
At higher Ct, Its CI potential in AE, namely H2SO4, was stronger [54].  
 
Conclusions 
KBE showed excellent CI results against MS corrosion in a 0.5 M H2SO4 solution. 
Its IE(%) increased with higher Ct. The highest IE(%) of 98.41% was observed for 
the Ct of 1600 ppm. All electrochemical measurements showed an analogous trend 
of IE(%). KBE adsorption onto the MS surface obeyed Langmuir's isotherm. It was 
a monolayer adsorption, and its nature was spontaneous and comprehensive. Surface 
morphology study via SEM confirmed the MS surface improvement, due to KBE 
adsorption onto it. KBE corrosion protection of MS, at particularly low Ct, makes it 
an ideal material for creating self-healing coatings. 
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Abbreviations  
AE: acidic environment 
AFM: atomic force microscopy  
Cdl: double layer capacitance  
CI: corrosion inhibitor 
Cinh: inhibitor concentration  
CPE: constant phase element 
CR: corrosion rate 
Ct: concentration 
Ecorr: corrosion potential 
EIS: electrochemical impedance spectroscopy 
GC-MS: gas chromatography/mass spectrometry 
H2SO4: sulfuric acid 
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HER: hydrogen evolution reaction 
icorr: corrosion current density 
IT: immersion time 
KB: Kala Bansa (Barleria Prionitis) 
KBE: Kala Bansaextract 
LPR: linear polarization resistance 
MF: molecular formula 
MS: mild steel 
MW: molecular weight 
OCP: open circuit potential 
PA: peak area 
PDP: potentiodynamic polarization 
ppm: parts per million 
R2: regression coefficient 
Rct: charge transfer resistance  
SC: surface coverage 
SEM: scanning electron microscopy 
SI: similarity index 
SR: scan rate 
T: temperature 
WL: weight loss 
 
Symbols definition 
a: anodic Tafel slope 
c: cathodic Tafel slope 
ΔG°ads: standard free energy for Gibbs 
ΔH°ads: standard enthalpy 
ΔS°ads: standard entropy 
Ea: activation energy for Arrhenius equation 
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