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A b s t r a c t - Research over more than 150 years has made clear that many electrochemical 
systems exhibit highly exotic behaviour. In the past few decades detailed dynamic studies of 
these interesting results often reveal oscillations, which vary from periodic to quasi-periodic 
to chaotic. 

The application of linear theory of the irreversible thermodynamics to a variety of elec­
trochemical problems demonstrates its utility, but the time evolution of certain phenomena 
must be modeled by non-linear equations to characterize their dynamic behaviour. The new 
ideas and solution methods in non-equilibrium phenomena, that are revolutionizing dynamic 
systems theory, provide the framework for understanding the nature of electrochemical dy­
namics. The extremely complex structures generated by certain systems, are analyzed in 
terms of fractals, one of the most rewarding scientific developments of recent years. The con­
cept of fractal, their dimensions and the relations between fractal character of the phenomena 
and the dynamics of the processes are object of today's fundamental research. 

In this work a quick overwiew is presented of some recent developments related to elec­
trochemical dynamical systems. Attention is focused predominantly on the typical tools that 
are useful in the study of these systems. A summary of some oscillatory phenomena from 
different areas of electrochemistry is presented. Emphasis will be placed on those aspects 
that may prove beneficial for electrochemists. 

INTRODUCTION 

Electrochemical systems are known to show a variety of irregular steady-state 
and dynamic features. There is a great assortment of processes which can exhibit 
an exotic behaviour, such as oscillatory phenomena. Periodic electrode processes 
dates back to nineteeth century and induced transition to chaos have been reported 
already 30 years ago, long before similar phenomena have been recognized in non 
electrochemical systems. 

Systematic both theoretical and experimental analysis of these electrochemical 
phenomena have aroused great interest. That study is carried out by means of the 
dynamic systems theory, which leads to find a number of regularities, using new 
concepts, such as dissipative structure or strange attractor. Some contraditory ideas 
can be reconciles if a fractal geometry is adopted. 

In the last time many papers on these topics have appeared, frequently directed 
to specialist. A few popular publications give some information, but do not allow 
the non-specialist get an actual information of the matter in hand. The aim of this 
work is to point out as the theoretical speculation suggests an exciting experimental 
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research in both fundamental and application fields of electrochemistry. They are 
illustrated using appropriate examples from recent literature on the subject. In the 
first section of this paper there is given a short exposure of irreversible thermody­
namics concepts, and the second briefly presents, in the simplest possible way, the 
main ideas of non-linear dynamics and the concepts of fractal geometry. The last two 
sections give, respectively, an account of some recent developments on electrode os­
cillatory behaviour and fractal properties of a variety of electrochemical phenomena. 

E V O L U T I O N C R I T E R I A 

Equi l ib r ium situations have been studied succesfully by classical thermodynamics. 
However, systems where there is transport of energy and matter across the borders are 
very familiar. These open systems show frequently non-equilibrium behaviour, which 
study is the objective of the irreversible termodynamics. The theory of irreversible 
thermodynamics is suitable for the study of processes i n electrolyte systems, and 
the transfer of electric charge processes are better understood by application of this 
theory. 

A s it is well known, the second law of thermodynamics can be expressed formally 
in terms of change of entropy, S, in a system. In an isolated system the sum of al l 
entropy changes is 

d £ > 0 (1) 

where the equality holds only for reversible processes. Then , an irreversible process 
yelds an increase in the total entropy, and this entropy production leads to a dis­
sipation of energy. The entropy of an isolated system increases unti l it reaches its 
max imum at equi l ibr ium. 

If the system can exchange energy wi th the environment, i t is known as a closed 
system, and its behaviour is decribed by some state function, A or G, which values 
at equi l ibr ium are minumum wi th respect any change of state. 

The formulation of second law can be easily extended to open systems, in which 
energy as well as matter may be exchanged wi th surroundings. In this case, the 
change of entropy is composed of two terms 

dS = diS + deS (2) 

where deS is the transfer of entropy accross the boundaries and d ,5 is the change of 
entropy corresponding to the processes occcurring inside the system itself (see F i g . 
1). For this later entropy production, the second law states that 

diS > 0 (3) 

for any process. 
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If P is the rate of entropy production, it can be expressed in the form 

di * = ¥ = E'****° (4) 
k 

where J*. is the flow associated wi th the irreversible fct/lprocess and the generalized 
force g iv ing rise to this flow. 

System 

Surroundings 

F I G . 1. Schematic representation of the entropy changes 
occurring in an open systems. 

L i n e a r b e h a v i o u r . In a process at equi l ibr ium, generalized forces vanish and 
there are no flows. These become 

(Jk)eg = 0 and (Xk)eq = 0 (5) 

But close to equi l ibr ium, forces are relatively weak, and the flows can be expanded 
in power series, from which, after neglecting the non significant terms, i t is obtained 
the linear relation between fluxes and forces 

J f c = (6) 

where Lu is a coefficient, given by 

These two last equations define the behaviour of a great number of irreversible phe­
nomena which can be studied under this linear approximation. Accord ing Onsager's 
reciprocity relation, Lki — X;jt, which stablish connections between independent i r­
reversible porcesses. Consequently, entropy product ion is bo th thermodynamic and 
kinetic quanti ty through thermodynamic forces and flows, respectively. 

Thermodynamic analysis of steady state i n linear range, under close to equi l ibr ium 
conditions, shows that the system is directed towards a state of minimum entropy 
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production, P. The theorem of min imum entropy product ion, due to Prigogine, can 
be expressed in the form 

dP 

where inequality and equality hold , respectively, for away from and at the steady 
state. D u r i n g the evolution of the system from its in i t i a l state, the entropy product ion 
decreases and reachs a m in imum at its stationary state. T h i s is val id only i f the 
phenomenological coefficients are supposed to be constant. 

Non-linear behaviour. Cer ta in phenomena cannot be described by linear ther­
modynamics because their non-linear development. Far from equi l ibr ium, the steady 
state of the system is not stable, and the system goes over to a new steady state which 
may well have a different energy product ion. In this si tuation, as a consequence of 
inestabilities, ordered structures i n the system are formed. Under this conditions, 
equation (6) is not val id and equation (8) needs not be satisfied. 

Prigogine proposed a new stabil i ty cri terion. In the non-linear region, i t is possible 
to arrive at 

y ^ ) = £ * j * * * * (9) 

k 

where 6Jk and 6Xk are, respectively, the deviations of Jk and Xk from the steady 
state. The right hand of this equation, which represents the excess entropy production, 
depends on the form of fluxes and forces. Near equi l ibr ium dP > 0, as a consequence 
of the sencond law, but far from equi l ibr ium the t ime derivative %(62S) needs to be 
positive. The non-equil ibrium steady state becomes unstable as soon as 62S becomes 
negative. It is remarkable that equation (9) is a sufficient and not a necessary criterion 
for the stabil i ty of a thermodynamic state. 

A s a result, both the distance from equil ibriun and the non-linearity may be 
capable to dr iving the system to an ordered configuration. Th i s is called dissipative 
structure, i n contrast w i th the equi l ibr ium conservative structures. F i g . 2 illustrates 
the two types of dynamical structures, showing area preservation or contractat ion to 
a single point in the phase space diagram. 

FIG. 2. Phase space diagrams of a) conservative 
and b) dissipative dynamic system. 
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D Y N A M I C S , C H A O S A N D F R A C T A L S 

The thermodynamic considerations in the previous section were independent of 
process mechanism and their dynamic behaviour. If dynamics is the study of change, 
a dynamical system must be a system whose state at any time can be characterized 
by a set of variables. If the dynamic law of a system is linear, its behaviour must 
be very simple. However, representative phenomena are not adequately described by 
linear dynamics. 

Non-linear dynamics. The most familiar physical systems are governed by a 
complicated non-linear function of the state variables, and its temporal evolution 
w i l l generally depend on the start conditions. The non-linear dynamics give powerful 
tools to a coarse d e s c r i p t i o n of the systems and to revel the high complexity that 
their evolution can give rise. 

To illustrate these ideas, consider a system embedded in a medium wi th which 
it exchanges some properties, X , ; the t ime dependence of these properties can be 
expressed in the form 

^ • = Fi(Xu...,Xn]Xi,...,Xm) (10) di 
where F represents the dynamic law. The evolution of the system is represented in 
a space by the state variables, which is called phase space, and this representation 
trace out the trajectory of the system. If in i t ia l ly far from equi l ibr ium, variable X{ 
tends to i t , in which the property attains (Xi)eq value. 

In the vicinity of equi l ibr ium, property deviation from its equi l ibr ium value can 
be wri t ten 

xx = Xi - (Xi)eq (11) 

which evolution is given by 

< 1 2

> 

where $ is a thermodynamic potential taking its min imun value at equi l ibr ium and 
Vij a symetric mat r ix . 

In a dissipative dynamic system, the phase space trajectory tends wi th t ime to a 
restricted region, as illustrated in F i g . 2. Such region is known as attractor, because 
a finite set of in i t i a l coordinates converge to i t . The set of a l l in i t i a l conditions of 
trajectories that converge on a specific attractor defines a catchment region called 
basin of attraction. F i g . 3 represents schematically an attractor and its basin of 
at traction. Different types of attractors commonly observed in dissipative systems 
are shown in F i g . 4. 
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attractor 

basin of att raction 

F l G . 3. Schematic representation of an attractor and its basin of attraction. 

Special insterest is found in chaotic attractors. In this case, the trajectory exhibits 
most of the features that one would associate with random functions, producing sen­
sitive dependence on initial conditions and long-term unpredictability. To attempt to 
know where do trajectory points go and what do they do when they get there, math­
ematicians have developed techniques for obtaining information from experimental 
data to dilucidate the situacion. 

cj 

h) d) 

F I G . 4. Types of attractors: a) •point attractor representative of a steady state, b) limit 
cycle attractor representative of a periodic regime, c) torus attractor representative of a 

quasi-periodic regime, and d) strange attractor representative of a chaotic regime. 

The complexity of phase portrait in three or more dimensions can be reduced by 
a mapping of one or two dimensions, according Poincare. A Poincare section consists 
in a sequence of dots corresponding to the projection of the attractor trajectory at 
specific times. In this way, Poincare mapping acts in a space of smaller dimensions 
than that of the phase space. As shown in Fig. 5, analysis of time oscillations leads 
to two-dimensional phase projection of trajectories onto the phase plane and the 
corresponding Poincare section. 
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Routes to chaos. Sometimes, when an oscillating process is run, the observed 
oscillations are aperiodic. Amplitudes and periods of oscillations appear random. In 
general, a dynamic system can have more than an attractor, that is, different initial 
conditions can lead to different long time behaviours. 

Transit from a stable to a chaotic regime is easily seen with the graphics of Fig. 
6. These are based on the difference equation 

X n + 1 = a Xn{\ - Xn) (13) 

F I G . 6. Logistic maps for différents values of parameter a, giving: a) zero, b) 
limit cycle, c) period doubling <mdd) no estable solution: strange attractor. 
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which generate the future value Xn+i of a variable X from its value Xn at the 
prior step n i h . The logistic maps show the curve of equation (13), the bisectrix line 
Xn+\ = Xn and a set of lines connecting successive iterations. Starting with some 
initial value, Xo, the first point, X\ is found where the line XQ meets the curve; the 
next step is obtained moving to the bisectrix, from which X<i can be found by going 
vertically to the curve. Depending on parameter a the different maps of the figure 
are obtained, with different solutions; for the highest a no stable solution is attained. 

The mechanisms at origen of these different attractors is an instability and sub­
sequent bifurcation. A bifurcations means the restructuring of a system, that occurs 
when the control parameter passes through a critical value, at which the unique so­
lution branch loses its stability and new stable branches of solutions are generated. 
Fig. 7 represents a schematic bifurcation diagram. 

«• Multiple solutions •> 

F l G . 7. Bifurcation diagram showing how the thermodynamic branch 
becomes unstable beyond a certain value of control parameter. 

The bifurcated system oscillates between values, but on further increasing control 
parameter, a cascade of bifurcations occurs in the logistic map to result in a chaotic 
evolution. 

Detained analysis of the complex forms of strange attractors suggests their fractal 

nature. Order and chaos are usually regarded as antithetical concepts. But in nature 
chaos and structures showing a high degree of spatiotemporal order coexist. Indeed, 
chaotic and ordered structures arise from the same sort of non-linear laws and are 
often inseparables. The degree of order in chaos is generally expresses in terms of a 
fractal dimension. 

F r a c t a l p a t t e r n s . Many familiar electrochemical phenomena are developed by 
non-equilibrium dynamics, through very complex processes, yelding patterns difficult 
to understand, and showing a fully random organization. The new concept of fractal, 

introduced by Mandelbrot, has contributed to obtain a detailled information on the 
properties and behaviour of such systems. In the last years, it has been appeared a 
large production of research literature on the topic. 

The term fractal is applied to complex patterns, objects, curves, functions or sets, 
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to indicate both their infinitely broken structure and that they are characterized by a 
non-integer dimensionality. Dimension can be defined intuitively as a scaling of bulk 
with size. In geometrical terms, it is the exponent scaling an object's bulk with its 
size 

bulk oc size (14) 
where the bulk may correspond to a volume, a mass or a measure of information 
content and size is a linear distance. The relation 

dimension = lim 
In bulk 

size-+o In s ize 
(15) 

gives the dimension. 

The measure of any pattern is a function of the measuring unit size. For instance, 
the apparent length, L , of an irregular profile increases as the size of measuring unit, 
A, decreases according to power law 

L{X) oc AT (16) 
If N(X) is the number of line segments of length A needed to cover the profile, the 
lenght is L = N(\) A, which becomes asymptotically equal L in the limite A -> 0, 
independently of the measuring unit size. The profile fractal dimension, D, is given 
by the relation D = 1 + \m\. This procedure is known as structured walk method. 
A typical application is shown in Fig. 8 for a coastline. 

F l G . 8. Structured walk method for evaluating 
the fractal dimension of a rugged boundary. 

In practice, fractal dimension can be determined counting the number of squares 
("boxes") with edge length A, needed to cover the profile as a function of A. This 
method is called 602; counting, and it applies the scaling law 

N(X) oc X~D (17) 
from which 

(18) 
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The dimension is computed graphically from log-log plots. 

Frequently, the formation of a fractal object follows a deterministic rule. This 
is done in the forms of Fig 9 (a and 6) and in many fractal structures developed 
by the mathematicians; the fractals of this kind are called deterministic. If the 
fractal object do not change by enlargement or reduction by an arbitrary factor, 
it shows self-similarity. This property is applicable only inside a range limited by 
the object size and its dimension. Many nature occurring fractals do not follow a 
deterministic rule, and are known as stochastic fractals (c). Under this conditions, 
the scalling takes a statistic meaning. To generalize the fractal concept to non-
self-similar objects, it is introduced the concept of self-affinity, which is applied to 
structures showing self-similarity in a given space direction (d). Finally, the pattern 
(e) consists in a multifractal object, characterized by a large number of independent 
fractal dimensions. 

a) 

b) 

c) 

d) 

e) 

F l G . 9. Construction of fractals embedded into two dimensions: a) growing and b) by 
subsequent division to generate deterministic fractals, c) stochastic and d) self-affine 

fractals and e) multifractal objects. 

It is today well accepted that the fractal dimension may be inappropriate for 
characterizing detained structure of real patterns. For these multifractal structures 
the concept of generalized fractal dimension was introduced. The generalized fractal 
dimension is given by 

n .. 1 Ínvio) 
D„ = hm Mg) 

9 A-o q- 1 In/ ( y ) 

where 
yv(A) 

X(q) = £ Pi(X)9 (20) t=i 
and Pi is the relative portion of the profile contained in the ith cell, for q = 0,1,2, 
etc. Values of Dq increase slightly with q. 
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ELECTROCHEMICAL OSCILLATIONS 

Open electrochemical systems advance to a definite steady state showing a variety 
of temporal behaviours. A large number of examples exhibits spontaneous oscilla­
tions. However, many of these observations, which now seems to be well recognized, 
have been regarded as curiosities or forgoten completely. New instrumental facil­
ities and fiability of data obtained have favored dynamical analysis of oscillations. 
In this way, considerable material on periodical electrochemical phenomena recently 
has been collected and theoretically studied. Here there are only indicated some sys­
tems whose electrochemical oscillations have been observed and for which processes 
possible mechanisms have been proposed. 

Many anodic processes exhibit oscillating behaviour. Observations of oscillations, 
often irregular, have been done in electrodissolution of metals. They have also been 
observed during electrocatalytic reactions as well as reduction processes. Most of 
these oscillations have been detected at electrodes on which anodic or cathodic surface 
layers can be formed. Typical electrochemical examples of oscillatory behaviour are 
presented in Fig. 10. 

T y p e s o f o s c i l l a t i n g e l e c t r o d e p r o c e s s e s . Electrochemical oscillations have 
been reported in connection with anodic dissolution of metals, such as iron, nickel and 
copper in acid media. Some experiments were done at potentiostatic conditions. The 
current is a function of the applied potential; at low potentials the current is steady 
whereas for intermediate potenciais it is oscillating, and by above certain potential 
values the electrode is passive. A summary for iron behaviour is given in Fig. 11 
(Diem and Hudson, 1987). Comparation of potentiostatic and galvanostatic modes of 
operation is very useful for the study of bifurcations, as it was shown for nickel (Lev, 
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Wolffber, Stheintuch and Pismen, 1988). Copper has been investigated in phosphoric 
and chloride media (Albahadily and Schell, 1988; Bassett and Hudson, 1989). Effect 
of stirring condition has been recently reported for anodic behaviour of iron (D'Alba 
and Di Lorenzo, 1989). 

o ' 1 i i i ! _ 
u VI o 04 0 10 OIS 030 0 2S 

E | V y,. HR HfcSO,! 

F I G . 11. Potentiostatic behaviour of iron: Upper and lower curves 
are maxima and minima, respectively, of the oscillations. 

Oscillations have also been observed during anodic oxidation of non-metallic 

species, such as hydrogen or organic compounds. Non-steady behaviour of hydrogen 
electrooxidation has been known for sometime. Recently, kinetic equations describing 
potential oscillations due to coupling of hydrogen anodic oxidation with silver depo­
sition/dissolution have been developed (Kodera, Yamazaki, Masuda and Ohnishi, 
1988). Experimetal results of periodic phenomena that accompany the anodic oxida-
cion of formaldehyde (Xu and Schell, 1990) and of a mixture of formate and formic 
acid under galvanostatic conditions have been reported (Schell, Albahaduly, Safar 
and Xu, 1989) 

Although most cases of electrochemical fluctuations were observed in anodic pro­
cesses, several examples of cathodic oscillatory reactions have been reported. Recent 
works correspond to phenomena observed in galvanostatic reduction of hydrogen per­
oxide on platinum electrode in acid medium and during its reduction at chalcopytite 
cathodes. In the last case, the reduction cause a remarcable corrosion of the electrode 
surface (Fetner and Hudson, 1990; Cattarin and Tributsch, 1990). 

Cathodic electrodeposition of metals showed non-linear oscillations. It has been 
lately reported for zinc ion reduction at different electrolyte concentration and applied 
potential (Suter and Wong, 1989), see Fig. 12, or fixed current (Argoul and Arneodo, 
1990). Since the interface is moving the oscillating signal displays a slow drift, which 
can be removed by Fourier filtering. 

M o d e l s o f o s c i l l a t i o n s . Models to explain the nature of the oscillatory electro­
chemical response were proposed some time ago. The availability of the techniques 
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in non-linear dynamics may result in a more complete analysis of the data in terms 
of phase portraits. 

( b) 7 V, 0.1 M 

-I —H 50»ec h— 

T i m e 

FlG. 12. Current oscillations observed at various 
concentrations and voltages in electrochemical 

growth of zinc dendrites. 

Systems generating a stable limit cycle, corresponding to passivation of metals or 
hydrogen peroxide reduction have been reported. In this last case, on chalcopyrite 
cathodes, kinetic treatment developed in the phase space gives a limit cycle trajectory 
independent on the initial conditions (Cattrin and Tributsch, 1990). However, on 
platinum electrodes the complexity of oscillations shows that low-order chaos can be 
found for some parameters values (Fetner and Hudson, 1990). 

During anodic dissolution of iron chaotic current oscillations were observed (Diem 
and Hudson, 1987). Copper electrodissolution, see Fig. 13, exhibits evidence for the 
sequence one-band chaos, two-band chaos, double torus, torus, limit cycles and steady 
state, where the thickness of a surface film acts as a slowly varying parameter (Bassett 
and Hudson, 1989). Complex behaviour of nickel anode dissolution has been recently 
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modelled as a chaotic dynamics (Lev et ai, Wolffber, Piesmen and Stheintuch, 1989). 
Fig. 14 shows the richness of comportments, which suggests a highly complex kinetic 
model for the electrochemical reaction. 

TIME » M.8 

FIG. 13. Chaos on a broken toroidal structure: a) time series, 
b) attractor, c) Poincare section and d) series of Poincare sec­

tions, from copper dissolution experiments. 

SULFURIC ACID CONCENTRATION (N) 

FIG. 14. Structure of the complex domain of nickel electrodissolution. 
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Electrochemical deposition has been found to produce a complex patterns, which 
growth process is different from other non-equilibrium spatio-temporal phenomena. 
Linear oscillations observed in electrochemical growth of zinc depostits have been 
reported (Sutter and Wong,1989). The complexity of the patterns geometry is in­
tricately connected with the dynamical evolution. The morphology is precursor to a 
chaotic dynamics, which Poincare section demonstrates the low dimensional nature 
of this chaotic state (Argoul and Arneodo, 1990). Non-periodic oscillations observed 
for this system and the corresponding analysis are presented in Fig. 15. 

FlG. 15. Chaotic regime from potential measurements in electrochemical 
deposition of zinc: a) potential vs. time, b) phase portrait, c) Poincare section 

and d) one-dimensional map. 

FRACTAL PROPERTIES OF ELECTROCHEMICAL SYSTEMS 

Application of fractal ideas to electrochemical phenomena is not a new topic. 
Fractal electrodes have been reported and its applicability to the study of faradaic 
impedance results is well known. Also, auto-similarity character of electrode surface, 
specially in battery electrodes, has been used to interpret the current efficiency. Par­
ticularly, studies on electrodeposition have become important because they supply 
patterns to test spatial models and the corresponding temporal dynamics. 

E x p e r i m e n t a l e l e c t r o c h e m i c a l p a t t e r n s . Electrochemical deposition has 
been found to produce a variety of patterns, ranging from orderly dendrites to random 
fractals (Matsushita, Sano, Hayakawa, Honjo and Sawada, 1984; Sawada, 1986). Si­
multaneous analysis of the statics and dynamics of fractal growing patterns provides 
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a quantitative characterization of the deposit and its dependence on the experimen­
tal conditions, respectively (Grier, Ben-Jacob, Clerke and Sanders, 1986; Sagues, 
Costa, Mas, Vilarrasa and Lopez, 1991). Depossition onto a linear electrode provide 
further information about the growth and diffusion control model. The electrochem­
ical polymerization from neutral species has also been exhibited interesting patterns 
(Kaufman, Nazzal, Melory and Kapitulnik, 1987). 

log 2e 
FIG . 16. Digitized images and plots used to calculate the generalized fractal 

dimension corresponding to electrodeposits of zinc. 

The use of the generalized fractal dimension, Dq, is useful to dicuss the self-
similarity of experimental morphologies (Sagues, Mas, Vilarrasa and Costa, 1990). 
An application to zinc patterns is given in Fig. 16. When varying operation con­
ditions, diferent textures are obtained. In the simple occurrence of uniform fractals 
with an uniform distribution, all generalized dimensions equal to fractal dimension. 
From time effect on deposit thickness the growth velocity is calculated (Costa, Sagues 
and Vilarrasa, 1991). Fig. 17 shows digitized images of copper electrodeposits taken 
at different times. 

F IG . 1 7 . Patterns of copper electrodeposits taken 
at 189, 4 3 0 , 480 , 720 and 900 s, respectively. 
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Electrodissolution of metals produces corroded surfaces, which morphologies are 
rarely uniform. The pits observed on this corroded surfaces have a variety of sizes and 
shapes. The fractal dimension concept can be applied to experimental pit boundaries 
(Costa, Sagues and Vilarrasa, 1991). The rugged boundary of a corrosion pit is shown 
in Fig. 18, as well as the practical determination of its fractal dimension. 

F l G . 18. Digitized micrograph of a pit showing schematically the practical 
utilization of a) structured walk and b) box counting methods to compute 

fractal dimensions. 

Simulations of electrodeposits. Idealized computer simulations of many elec­
trode processes have been carried out, in order to explore the physical structures 
formed on the electrode and to investigate the spatial and temporal behaviour of the 
system. 

The character of experimental patterns presented in previous section is found to 
be similar to those obtained by diffusion-limited aggregation (DLA). This well-known 
model consists in a cluster growing from a seed particle by the addition of particles 
realised far from the cluster (Witten and Sander, 1981, 1983). Several algorithms for 
computer routines have been formulated to give rise to disorderly aggregates with 
no apparent symmetry (Sagues and Costa, 1989). Fig. 19 presents three clusters 
generated with different working conditions (Kertesz and Vicsek ,1986). 

FIG. 19. Simulation of radial aggregates showing different morphologies: 
a) fractal, b) dendritic and c) needle patterns. 
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The morphology of these radial clusters changes from a typica l random fractal 
structure to a dendritic growth and to a needle crystal , as a consequence of the 
competit ion between anisotropy due underlying square lattice and the fluctuations 
due to the random walks. A typical two-dimensional aggregate on a "l inear" electrode 
is shown in F i g . 20, where the teneous structure characteristic of fractal patterns is 
clearly reproduced. 

FIG. 2 0 . Two-dimensional simulation 
of diffusion-controlled electrodeposition. 

The effect of surface diffusion on the morphology of electrodeposited metal clusters 
has been studied, using square and hexagonal lattice models, which diagrams are 
outlined in F i g . 21 (T . Hepel , 1987). 

FIG. 2 1 . Effect of surface diffusion on metal cluster: 
a) square and b) hexagonal lattice models. 
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Al though it is not possible to cover all of the many results obtained in the last few 
years on non-equilibrium processes in the wide field of the electrochemistry, here it 
has been presented some both conceptual and experimental material , which can point 
out that electrochemistry is a fertile field for applications of theories of non-linear 
dynamics. However, i t seems clear that there is a great need for further experimen­
tal work that can provide answers to many of the most theoretical questions and, 
consequently, this subject is in want of much more attention from researchers in 
electrchemistry. 
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VOLTAMMETRIG BEHAVIOUR OF I N S U L I N - Z I N C ON THE MERCURY INTERFACE 

J. Tri.iueque, F . V i c e n t e * . Depa r t amen to de Q u í m i c a F í s i c a . F a c u l t a d de 

Q u í m i c a . B u r j a s s o t . V a l e n c i a ( S p a i n ) . 

F . M a r t i n e z y J. V e r a . Depa r t amen to de Q u í m i c a F í s i c a . U n i v e r s i d a d de 

M u r c i a . M u r c i a ( S p a i n ) 

SUKKARY 

Insulin-zinc suspensions are more electroactive on the hanging 

mercury drop electrode (hmde) when the protein is in amorphous state. 

Reduction and reoxidation of disulphide bridges depend on the Zn(II) 

present in buffer solutions. 

The influence of the insulin adsorption on the reduction 

process of zinc at the hmde , can be explained by variation oi the 

exchange- current, density with a change in the surface fraction covered 

by the protein on the electrode. 

IBTRODUCTIOli 

I n s u l i n i s i o u n d f o r m i n g a monomer -d imer -hexamer s y s t e m ( 1 - 3 ) 

i n an aqueous s o l u t i o n . T h i s t y p e o f a s s o c i a t i o n e q u i l i b r i a depends an 

i t s c o n c e t r a t i o n , on t h e pH, on t he t e m p e r a t u r e (4> and on t h e 

medium(5) , The a s s o c i a t i o n c o n s t a n t s w h i c h c h a r a c t e r i z e t h e monomer-

d imer and d i m e r - h e x a m e r e q u i l i b r i u m s a r e 2 .2x10" ' M - 1 and 8 .6x10" ' M 
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