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Abstract 
Inhibition of MS corrosion in a 3% NaCl solution, by glasses containing Ti-0, Ti-5 and 
Ti-7, in different C, was investigated using AFM, EIS, FTIR spectroscopy, PPD, SEM 
and XRD techniques. PPD and IES gave IE(%) of 92.8, 99 and 98.3%, and 91.9, 98 and 
98.3%, for Ti-0, Ti-5 and Ti-7 glasses, respectively, at optimum C (0.4 g/L). In addition, 
EIS results indicated that IE(%)increased with higher C of Ti in the glasses, reaching its 
maximum at 7% TiO2. The three studied compounds acted as anodic inhibitors, though 
anodic reactions were more suppressed than the cathodic ones. SEM revealed that the 
inhibitors significantly stopped the attack by Cl- ions, through chemical adsorption onto 
the MS surface.  
 
Keywords: Ti-0, Ti-5 and Ti-7 glasses; MS; 3% NaCl; AFM; EIS; FTIR; PPD; SEM; 
XRD. 

 
 

 
Introduction 
MS is the most widely used Fe alloy in industries. It comes very frequently in 
contact with Cl- ions, under numerous conditions and circumstances [1]. Cl- ions 
are known to be aggressive towards MS, causing severe corrosion problems. 
Various inorganic compounds, e.g., nitrates, sulfates, silicates and chromates, have 
been reported as inhibitors of MS corrosion in water containing Cl-, but their 
IE(%), when used by themselves, was found to be very low [2-4]. Zn2+, as inhibitor 
of steel corrosion in water, has been known since the 19th century,  with many 
examples of its use in combination with other compounds, in order to improve 
metals protection [5-9]. Zn salts relatively low toxicity and ready availability have 
led to their wide use in practice.   
Many organic composites with N, S and P atoms have also been examined as 
corrosion inhibitors for Fe dissolution in acidic and halide media [10-13]. 

                                                           
 The abbreviations and symbols definition lists are in pages 356-357. 
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Compounds containing P, such as phosphonates and polyphosphates [14, 15], have 
also been included among such inhibitors. In fact, such composites, in combination 
with Zn2+[16-19], have shown synergistic effects, and can provide high IE(%) for 
MS corrosion in water containing Cl-. In various industries, water is in great 
demand, and its largest source is sea water, which has high corrosivity, due to the 
presence of approx. 3.5% NaCl [20-24]. Moreover, MS, the cheapest and more 
applicable material in industries, gets attacked by Cl-. So, it becomes a basic need 
to investigate various corrosion inhibitors for MS in 3% NaCl solutions [25-30]. 
 
Experimental procedure 
Electrochemical cell 
The electrolysis cell was a borosilicate glass (Pyrex®) cylinder closed by cap, with 
three apertures. The used WE was MS, and its chemical composition is 
summarized in Table 1. The investigated surface had 1 cm2. Before each 
experiment, MS was polished using emery paper until 1500 grade, cleaned with 
ethanol, washed with distilled water and dried at room T. MS, Pt and SC were used 
as WE, CE and RE, respectively. For long exposure experiments, between two 
measurements, the RE was washed from the test solution, for minimizing its 
contamination by Cl-, and the WE was set in immersion for 30 min, before each 
test. Also, the three Ti glasses were very soluble in a NaCl solution.  
 

Table 1. MS chemical composition (wt%). 
C Si Mn Cr Mo Ni Al Cu Co V W Fe 
0.11 0.24 0.47 0.12 0.02 0.1 0.03 0.14 <0.0012 <0.003 0.06 Balance 

 

Glasses preparation  
The glasses were elaborated by direct melting of NaPO3 and TiO2, with the 
compositions (100-x) NaPO3-x TiO2 (x = 0, 5 and 7% mol), in stoichiometric 
proportions. The reagents were finely ground in an agate mortar, and then placed in 
a porcelain crucible. Two thermal stages for minimizing P2O5 evaporation, at 300 
and 700 ºC, during 1 and 2 h, respectively, were achieved. The melting T (1100 ºC) 
of the most refractory composition was used as the preparation T for the entire 
composition series of this system. Finally, after heating at the preparation T, for 
30 min, the glasses were poured into a SS plate.  
 
Polarization measurements 
The WE was immersed in a 3% NaCl solution, during 30 min, until the Ecorr steady 
state was reached. The cathodic polarization curve was recorded from Ecorr, towards 
a negative direction, with a SR of 1 mV/s. After this scan, the WE was kept in the 
solution, until the steady state Ecorr (±0.02 V) was reached. The anodic polarization 
curve was recorded from Ecorr, towards a positive direction, also at 1 mV/s. The 
obtained polarization curves were corrected for ohmic drop, and the electrolyte 
resistance was determined by EIS. These measurements were carried out using a 
PGZ100 potentiostat monitored by a personal computer. For each C, three 
independent experiments were performed. The mean values and SD were also 
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reported. However, the overall icorr was considered as the sum of two contributions, 
ia and ic. For the domain not too far from OCP, we can consider that both processes 
obeyed the Tafel law (Eq. 1) [2, 31]: 
 

𝑖 = 𝑖 +  𝑖 = 𝑖 × ൫𝑒 ೌ × (ாିೝೝ) − 𝑒 × (ாିாೝೝ)൯            (1) 
 
where icorr,. βa and βc are expressed in A/cm-2 and V-1, respectively. These constants 
are related to β (V/dec-1), in a usual logarithmic scale, by the following equation: 
 
 𝛽 =

୪୬ (ଵ)


=

ଶ.ଷଷ


      (2) 

 
The corrosion parameters were then evaluated by the NLS method, with EC-Lab 
software, applying that equation. However, for this calculation, the applied E range 
was limited to ±0.100 V around Ecorr. Thus, a significant systematic divergence 
was sometimes observed for both anodic and cathodic branches. IE(%) was 
calculated using the following equation [2]: 
 
 𝐼𝐸(%) = ቂ1 −

ೝೝ

ೝೝ
° ቃ × 100  (3) 

 
where iº

corr and icorr are represent values without and with inhibitors, respectively. 
 
EIS measurements 
EIS measurements were carried out using a transfer function analyzer (Voltalab 
PGZ100, Radiometer Analytical), over the frequency range from 100 kHz to 100 mHz, 
with 10 points per decade. The amplitude of the AC signal was 10 mVrms. All 
experiments were performed at OCP. The obtained impedance data were analyzed in 
terms of the equivalent electrical circuit, using Bouckamp’s program [32]. IE(%) 
applied was evaluated from Rp (which was obtained from the semicircle diameter in 
Nyquist representation), with the following equation [33]: 
 

 η = 1 −
ோ

బ

ୖ
൨ ×  10    (4) 

 
where Rº

p  and Rp represent values without and with inhibitors, respectively. 
 
Surface studies  
In order to support electrochemical results, surface morphological SEM was used 
for the MS specimens immersed in a 3% NaCl solution, during 24 h, without and 
with Ti glasses.  
 
Results and discussion 

FTIR analysis 
The infrared spectra of the Ti glasses system, in the frequency range from 400 to 
1400 cm-1, are shown in Fig. 1.  
The different spectra are composed of broad lines that are typical of amorphous 
systems. 
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Wave number (cm-1) 

 
Figure 1.  FTIR spectra of the Ti  glasses system with the composit ion 
(50 −

୶

ଶ
)NaଶOxTiOଶ(50 −

୶

ଶ
)𝑃ଶOହ(0 ≤ 𝑥 ≤ 7 % molar TiOଶ).  

 

The plot, representative of NaPO3 (50Na2O - 50P2O5) (x = 0) is consistent with data 
reported in the literature on this type of composition [34]. We found AVV and SVV 
of the PO2 groups at 1276 and 1160 cm-1, respectively, which are characteristic of 
highly condensed phosphates. The absorptions at 1090 and 1000 cm-1 correspond 
to AVV and SVV of the PO3 groups (terminal groups), respectively. The bands 
located around 870 and 750 cm-1 (doublet) are attributed to AVV and SVV 
absorptions of the P-O-P bonds, respectively. All the deformation vibrations of PO4 

are grouped in the area from 530 to 470 cm-1.  
The spectra corresponding to the glasses containing Ti (x = 0, 5 and 7) show 
absorption bands typical of NaPO3 glass. However, the band attributed to the AVV 
of PO2 shifted from 1276 cm-1, for the NaPO3 glass, to 1214 cm-1, for the 
(45)Na2O-10TiO2-(45)P2O5 composition. This result was expected, since the 
phosphate chains interact more strongly with Ti than with Na and, therefore, the 
P-O bonds that bind with Ti ions are longer than those that bind with Na ions.  
Along with the shift in the bands related to AVV of PO2, the intensities of the 
absorption bands corresponding to AVV of O-P-O and SVV of P-O-P decreased 
with higher TiO2 content. These changes in the spectra of glasses with higher TiO2 
C were due to a decrease in the length of the phosphate chains [35].  
NaPO3 depolymerization by TiO2 led to the formation of short phosphate chains, 
characterized by the appearance of the AVV of PO2 at 1214 cm-1. Indeed, this band 
appears at 1000-1240 cm-1 in PସOଵଷ

ି, and at 1215 cm-1 in Na5P3O10 [34]. 
 
XRD  
In order to confirm the amorphous nature of our processed samples, XRD was 
performed. The recorded curves (Fig. 2) do not show diffraction peaks on our 
synthesized glass samples, but they show diffuse and broad peaks characteristic of 
the glassy state. 
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Figure 2. XRD spectra of the glass samples. 

 

PDP  
PDP curves of MS in the 3% NaCl solution without and with the three inhibitors, 
in various C, are presented in Fig. 3.  
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Figure 3. PDP curves of MS in 3% NaCl without and with Ti-0, Ti-5 and Ti-7, in 
different C. 
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The C range of Ti-0, Ti-5 and Ti-7 was from 0.1 to 0.4 g/L. All these curves were 
obtained after 1 h of immersion of the electrode in the electrolytic solution at OCP 
Ecorr [36, 37]. Then, cathodic and anodic polarization curves were recorded from 
independent experiments. For the cathodic and anodic scans, the initial E values 
were slightly more positive and negative, respectively, from Ecorr. 
From polarization diagrams shown in Fig. 3, it is evident that the inhibitors suppressed 
both cathodic and anodic reactions. Table 2 shows that Ti-0, Ti-5 and Ti-7, at the 
optimum C of 0.4 g/L, reached the highest IE(%) values of 92.8, 99 and 98.3%, 
respectively, and it also displays parameters, such as Ecorr, icorr, βc and βa, derived 
through the extrapolation method. βc values for the inhibitors changed with higher C 
than those of the blank solution, which suggests their effect on the kinetics of H2 
release. When Ti-0, Ti-5 and Ti-7 C were raised to 0.4 g/L, βa values decreased to 
110, 8.83 and 104 mV/dec-1, respectively [38-40].This implies that the kinetics of Fe 
dissolution in 1 M HCl was modified by these compounds, during the protection 
process, which can be attributed to their adsorption onto the MS surface active centers. 
The icorr values decreased with higher C of the inhibitors in 1 M HCl, reaching their 
lowest values at 0.4 g/L [41-44]. 
 

Table 2. Electrochemical parameters for MS in NaCl 3% containing different inhibitors C. 

Medium 
 

Conc. 
  (g /L) 

     Ecorr 

(mV/SCE) 

icorr 

(µA/cm-2) 

       β 
(mV/dec) 

IE 
(%) 

 -c  a 
3% NaCl          - 559  280   121  121     - 

Ti-0 0.1 532 37 177 119 86,7 
0.2 524 35 158  97 87,5 
0.3 499 22 176 104 92,1 
0.4 558 20 145 110 92,8 

Ti-5 0.1 498 27 2.48 10.2 90 
0.2 594 40 12  9 85 
0.3 463 14 4.64  7.93 94 
0.4 320 3 10.84  8.83 99 

Ti-7 0.1 478 22 73  138 92 
0.2 404 14 75  142 95 
0.3 394 12 95  120 95.6 
0.4 390 5 101  104 98.3 

 

Tafel plots revealed that, with the increase in the three compounds C, anodic and 
cathodic icorr decreased, Ecorr shifted to more positive values, and both cathodic and 
anodic β were affected. These results confirm the inhibitor anodic activity. 
Accordingly, Ecorr shifted to the cathodic branch direction, but the changes in the 
anodic β were more significant, implying the inhibitor role on the anodic MS 
dissolution mechanism. The lowest icorr value was obtained at the highest inhibitors 
C. The polarization data revealed that 0.4 g/L of the three inhibitors offered higher 
corrosion IE(%) than that of other C. These results showed the high capability of 
Ti glass inhibitors for MS CR reduction, through adsorption and/or film formation 
on the active sites [34, 45]. 
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EIS 
MS specimens were immersed in the 3 wt% NaCl solutions with and without the 
three inhibitors, and their influence on the corrosion IE(%) of the samples was 
investigated by EIS. Fig. 4 shows the Nyquist plots for the various MS samples, 
which exhibited larger semicircles for the solutions with inhibitors than for those 
without them. 
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Figure 4. Nyquist diagrams for MS without and with Ti-0, Ti-5 and Ti-7, in different C, 
after 30 min of immersion. 
 

In the case of brass, equivalent circuits (Fig. 5) were connected in series with two 
times constants. CPE means the possibility of a non-ideal capacitance, where n is 
the variable. CPE impedance is given by the following equation [35, 46]:  
 
 𝑍ா =  

ଵ

(ఠ)
    (5) 

 
where A is CPE magnitude, ω is the sine wave modulation angular frequency, 1 is 
the imaginary number and n is an empirical exponent that measures the deviation 
from the ideal capacitive behavior. Depending on n values (0, 1, -1 and 0.5), CPE 
can represent resistance, capacitance, inductance and Warburg impedance, 
respectively. [47]. The Cdl values derived from CPE and τ of the charge-transfer 
process, can be calculated using eqs. 6 and 7, respectively [48].  
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 𝐶ௗ =  ඥ𝐴(𝑅௧)ଵି   (6) 
 
 𝜏 = 𝑅௧ × 𝐶ௗ     (7) 
 
The proposed electrical circuit, as shown in Fig. 5, was used to describe the MS 
/electrolyte interface model. The employed circuit allowed for the identification of 
Rs, Rct and Rf. It is noteworthy that the Cdl value was affected by imperfections on 
the surface, and this effect was simulated via CPE [49, 50]. Qct and n parameters 
were employed when the surface heterogeneity could affect them. This 
heterogeneity might be due to surface roughness, corrosion product adsorption and 
porous layer formation. Therefore, the expression differs from CPE impedance 
frequently used nowadays, where the impedance of parallel connection between 
CPE and Rs will be expressed as [51]: 
 
 𝑍ா =

ோ௦

ଵ ା ோ௦ × ா(ఠ)
    (8) 

 

 
Figure 5. Electrochemical equivalent circuit used to fit impedance spectra. 

 

Table 3. Electrochemical impedance parameters for MS corrosion in 3%NaCl with 
various C of Ti-0, Ti-5 and Ti-7. 

Inhibitors 
  C 
(g/L) 

  Rs 
(Ω/cm²) 

    Qf 

(µF/cm²) 
nf 

    Rf 
(KΩ/cm²) 

Qct 

(µF/ cm2) 
nct 

 Rct 

(KΩ/ cm²) 
  Rp 

(KΩ/ cm2) 
IE(%) 

3% NaCl - 10 - - - - - 0.175 0.165 - 
Ti-0 0.1 11 3145 0.706 0.522 2057 0.937 0.676 1.187 86.1 

0.2 13 3648 0.602 0.258 3600 0.601 0.979 1.224 86.5 
0.3 7 808 0.633 0.932 3198 0.574 1.082 2.007 91.7 
0.4 10 3352 0.724 1.144 7623 1 0.912 2.046 91.9 

Ti-5 0.1 15 550 0.70 0.04 30 0.54 1.1 1.1 85 
0.2 12 107 0.67 0.1 146 0.98 1.5 1.6 90 
0.3 12 441 0.68 0.3 72 0.97 2.4 2.7 94 
0.4 8 61 0.85 2.1 75 0.65 6.9 9 98 

Ti-7 0.1 32 41 0.52 0.153 495 0.43 1.875 2.028 92 
0.2 31 71 0.6 0.109 491 0.65 3.250 3.359 95 
0.3 32 115 0.52 0.420 203 0.76 4.420 4.840 95.6 
0.4 43 22 0.57 0.707 171 0.63 8.920 9.627 98.3 

 

In the 0.4 g/L inhibited solutions, the impedance responses in the low frequency 
presented an increasing trend over time. It seems that more inhibiting species were 
available at the MS surface active zones with higher Ti glasses C up to 0.4 g/L. 
This means that this C of Ti-0, Ti-5 and Ti-7 in 3% NaCl led to a higher corrosion IE(%).  
Inspection of the results in Table 3 indicates that Rct value increased with higher 
inhibitors C. In addition, CPE value varied regularly with the Ti glasses C. The 
change in Rct and CPE values can be related to the gradual removal of water 
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molecules by the inhibitors molecules on the MS surface, which led to a decrease 
in the number of active sites prone to the corrosion reaction [52]. The increase in 
Rct value was due to the formation of a protective film on the metal/solution 
interface. The ongoing stability of  (in the range of 0.79-0.93) indicates that MS 
dissolution mechanism was charge transfer controlled, without and with the 
inhibitors. Moreover, Cdl decreased with higher Ti-0, Ti-5 and Ti-7 C, which was 
probably caused by a decrease in the local dielectric constant and/or by an increase 
in the electrical double layer thickness at MS surface. This suggests water 
molecules replacement (with high dielectric constant) by the inhibitors molecules 
(with low dielectric constant), which enhanced MS resistance [53]. The thickness 
of this protective layer was evaluated from the Helmholtz model given by the 
following equation [54]: 
 
 Cୢ୪ =  

Ɛబ

ୣ
S  (9) 

 
where ε0 is the permittivity of space, ε is the local dielectric constant, e is the film 
thickness and S is the surface area. Eq. 10 suggests that Cdl is inversely 
proportional to the protective layer thickness. So, the decrease in Cdl values 
resulted in an increase in IE (%) values (Table 3). 
 
SEM analysis 
SEM micrographs of MS surfaces after 24 h immersion in 3% NaCl, without and 
with inhibitors (0.4 g/L), are shown in Fig. 6.  
 

 

 
Figure 6. SEM images of MS after 24 h immersion in 3% NaCl without and with Ti-0, 
Ti-5 and Ti-7 (0.4 g/L). 
 

It can be clearly observed that, without inhibitors, MS surface is highly corroded, 
due to the NaCl attack. However, with inhibitors, MS surface morphologies 
remarkably improved [55-60], which suggests that they were adsorbed at the metal-
electrolyte interfaces, forming protective films.  
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Conclusion  
Electrochemical studies showed that the tested Ti glasses compounds are good 
inhibitors of MS corrosion in 3% NaCl. The inhibitors acted simultaneously on the 
anodic and cathodic electrochemical processes. Polarization curves show that the 
inhibiting effect of this compound resulted in a clear decrease in the cathodic and 
anodic icorr values, especially in the vicinity of Ecorr. A remarkable corrosion 
inhibition effect of Ti glasses was observed when their C was 0.4 g/L. Their IE(%) 
depended on the vitreous phase composition, reaching its higher value (98%) at 
0.4 g/L and 7% TiO2. The impedance tests confirmed these results and revealed 
that the inhibitor addition effect was seen as an increase in Rct, and as a strong 
decrease in electrochemical interface capacity value. The studies of the examined 
compounds adsorption onto the MS surface were reinforced by SEM, EDS and 
AFM. All these analyses led the authors of the present study to propose the 
formation of a strong inhibiting film that passivated MS, with very low icorr values. 
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Abbreviations 
AC: alternating current 
AFM: atomic force microscopy 
AVV: antisymmetric valence vibrations  
C: concentration 
Cdl: double layer capacitance 
CE: counter electrode  
CPE: constant phase element 
CR: corrosion rate  
E: potential 
Ecorr: corrosion potential  
EIS: electrochemical impedance spectroscopy  
FTIR: Fourier transform infrared  
I: current density  
ia: anodic current  
ic: cathodic current 
icorr: corrosion current density  
IE(%): inhibition efficiency  
MS: mild steel 
n: CPE exponent 
nct: heterogeneity coefficient of charge-transfer electrons 
nf: heterogeneity coefficient of the inhibitors film 
Na5P3O10: sodium tripolyphosphates 
NaCl: sodium chloride 
NaPO3: sodium hexametaphosphate  
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NLS: nonlinear least square  
OCP: open circuit potential  
P2O5: phosphorus pentoxide  
𝐏𝟒𝐎𝟏𝟑

𝟔ି: tetrapolyphosphates 
PDP: potentiodynamic polarization 
Qct: double layer capacitance of MS 
Qf: double layer capacitance of the inhibitors film 
Ra: average roughness 
Rct: charge transfer resistance 
RE: reference electrode  
Rf: resistance associated with the layer of products formed 
rms: root-mean-square 
Rp: polarization resistance 
Rs: solution resistance  
SC: saturated calomel  
SD: standard deviation. 
SEM: scanning electron microscopy 
SR: scan rate   
SS: stainless-steel 
SVV: symmetric valence vibrations 
T: temperature 
WE: working electrode  
XRD: X-ray diffraction  
 
Symbols definition 
β: Tafel slope 
βa: anodic Tafel constant 
βc: cathodic Tafel constant  
τ: relaxation time constant  
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