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Summary 

Modern theory of ionic solutions depends upon information on a variety of experi­
mental methods for a realistic adjustment of parameters. Hamiltonian models yield 
reliable equations for various solution properties with a unique set of basic para­
meters resulting from fits of different appropriate experiments, thus permitting the 
simulation of the properties of other electrolyte solutions for which data are not 
available. In this way knowledge-based data bases provide the property profiles of 
electrolyte solutions for applied research and technology. 
A survey is given of the information on structure and dynamics of electrolyte 
solutions obtained from high frequency permittivity measurements and of chemical 
models at McMillan-Mayer level permitting the calculation of electrolyte solution 
properties. The interplay of thermodynamic, transport, spectroscopic, kinetic and 
computer simulation methods is stressed. Illustrative examples are quoted. 

1. Introduction 

The progress in electrochemical technology during the last decade displays the role 
of electrolyte solutions in applied science and chemical engineering. A large variety 
of solvents, solvent mixtures and more or less complex ionic compounds gained the 
interest of scientists all over the world, documented by an increasing number of 
publications. The electolyte data base ELDAR [1 to 3] shows an input of more than 
2.000 papers per year with about 50.000 data tupels on thermodynamic, transport, 
dielectric, spectroscopic and kinetic data of electrolyte solutions, not included the 
contributions about electrode processes. The high flexibility of electrolyte solutions 
for tackling technical problems, evidenced by their wide variety of suitable solvents 
with widely spread physical properties such as viscosity, permittivity, freezing and 
boiling point, vapor pressure, stability or solvation power, and an almost unlimited 
scale of properties offered by the mixed solvent systems permits the realization of 
electrolyte solutions with properties planned on the drawing board [4]. 

The actual paper gives a survey on some modern developments in solution chemistry 
which may be helpful to practizing electrochemists for the modern understanding of 
electrolyte solutions.lt would like to be a guide in their choice for tackling problems. 
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2. Information on Structure and Dynamics of Electrolyte Solutions 
from Dielectric Relaxation Measurements 

2.1 Theoretical background 

A homogeneous system of dipole molecules representing the solvent of an electrolyte 
solution, placed in an electric field E answers by its equilibrium polarization 

P = e0(ea-1)E (1) 

e0 is the permittivity of the vacuum, es is the static relative permittivity. The electric 
polarization P consists of two parts: the orientational polarization (P M) resulting 
from the alignment of the permanent dipole moments /7,- in the electric field against 
thermal motion, (P^) = a n d the induced polarization (Pa) stemming from 
the induction of dipole moments fi1-rid — ct{E induced by the external field at the 
position of particle i, (Pa) = PYld)', oc{ is the polarizability of the dipole molecule. 
Pfj, and Pa are considered to be linearly independent. 

(P) = + (Pa>; (P^) = e0{es - £ o o ) P ; (Pa) = e0{£oo - 1)E (2a,b,c) 

The separation of (P^) and (Pa) is possible with the help of frequency-domain 
measurements. (P^) and (P a) are frequency-independent quantities at frequencies 
v (circular frequency u> = 2TTU) up to some hundred MHz, where the dipole-moment 
orientation follows the polarity changes of the external electric field without time lag. 
(P^) decreases when the polarity changes of the alternating field cause significant 
variation of the electric field strength within periods that are characteristic of 
molecular motions changing Ylfin s u c h as dipole orientation, mobility, or chemical 
reactions and H-bonding. For the liquids generally used as the solvents of electrolyte 
solutions the permittivity decrease occurs at HF/MW frequencies; (P^) reaches zero 
in the FIR/IR region where the permittivity is £QO- At these frequencies (Pa) is still 
unaffected as an intramolecular effect. (Pa) decreases at very high frequencies as a 
consequence of atomic and electron resonance effects. 
On the other hand, when in a time domain experiment a static field E{y — 0) 
initially applied to the system of molecular dipoles, is switched off at time t = 0, 
(P a) breaks down without time lag, whereas (P M) decreases monotonically with time 
to its final value (P^) = 0. 

A ( 0 ) i k * ) ) = (P,(0)P,(0))P; r(i); P p
o r = ( ^ ( 0 ) ^ ( ' ) } (3a,b) 

\PM")PvW)) 

The step-response function of the orientational polarization F°r(t) is of the relaxa-
tional type defining the relaxation time r of the process. 
It must be stressed that step-response functions F°T are macroscopic (phase) pro­
perties. To obtain information on the molecular level they must be converted into 
molecular autocorrelation functions cf)(t) defining the molecular relaxation times r' 

(4) 
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The proper conversion of F°r(t) into (f>(t) is still a matter of discussion. In cases 
where the rotation of the dipole molecule can be described by a rotational diffusion 
model, macroscopic (r) and microscopic (r') relaxation times may be approximately 
related by the Powles-Glarum equation [5] 

r =—^ r (5) 

and r' is proportinal to the molecular size of the rotating dipole molecule and the 
solvent viscosity 77 [6] 

r' = ^ f C (6) 
In eq. (6) Vm is the molecular volume, / is a factor depending on the molecular 
shape, and C is a factor coupling microscopic and macroscopic viscosity. 
The time-dependent response of polarization (P^(t)) to an arbitrarily changing 
electric field E(t) can be approximated by splitting up the field into a number of 
At block functions where E(t') is the field strength for the interval t' < t < t' + dt1 

yielding [7] 

\ dF0T(t') 
(P(l(t))=e0(e3-eoo) J E(t - t')f0/(t')dt'; f;T{t') = (7a,b) 

—00 

fpT(t') is called pulse-response function. 
Frequency domain experiments are carried out at a series of increasing frequencies of 
harmonically changing monochromatic electromagnetic waves, E(t) = E0exp(iujt), 
yielding the time dependence of polarization in an electromagnetic field of circular 
frequency u ^ 

(P>,<)) = e0(es -e^Êit) [ e~iut''f;T(t')dt' 

= e0(es-eoo)E(t)Cl[fZr(t1)} 

where Ciu[f°r(t')] is the Laplace transform of the pulse-response function. Eq. (8) 
shows that P^(w, t) is a complex quantity as a consequence of the complex quantity 
E0 exp(icut). The combination of eq. (8) and eq. (1) where P^ and consequently e are 
written as complex quantities leads to the frequency-dependent complex permittivity 

e » = e'H - « e » = (e. - e ^ U ^ i t ' ) ] (9) 

with a real part e'{u>) reproducing the dispersion of permittivity and an imaginary 
part e"(uj) reproducing absorption. The energy dissipated in the sample per unit of 
volume and time is 

W = l-E2

0ue0e"{u) (10) 

The information on structure and dynamics of dipolar liquids is hidden in the step-
response function F°T or pulse-response function f°r. The characteristic times of 
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molecular motions which change the mean dipole moment fli) are determined 
in time-domain and frequency -domain measurements as the relaxation times Tj of 
the molecular processes. A simple case is chosen to illustrate the relation of the 
response functions F°r and f°r and the underlying relaxation time. It is assumed 
that only one dipolar reorientation time r is responsible for the change of and 
that molecular reorientation is a first order process of rate constant k = r _ 1 

d{P»(0)PAi)) m k^P^t))- (3,(0)3,(0) = A ( 0 A ( 0 ) ) e x p ( - i ) (lla,b) 

T h e n t 1 t 
F°p

r{t) = exp( — ) ; /" = - e x p ( — ) (12a,b) T T T 
yield the frequency dependence of permittivity according to eq. (9) 

e(u) =6oo + -7—. ; e (w) = Soo + — 2 5 £ M = 2 2 ( 1 3 a>M 
1 + IUJT 1 + CJT̂  1 + CJZTZ 

In our laboratory the dispersion and absorption curves e'(u>) and E"{U>) are determi­
ned in the frequency range from 1 - 100 GHz by a method of travelling waves with 
the help of attenuation and phase shift measurements. The propagation coefficient 
k of the elctromagnetic wave in an electrically non-conducting liquid follows from 
the Maxwell equations as 

k = k0e{io); k0 = — (14a,b) c 
where c is the speed of light and k0 is the propagation coefficient of the electroma­
gnetic wave in the vacuum. 
The application of electromagnetic waves to electrolyte solutions changes the pre­
ceding theoretical considerations in only one point. The freely moving charges in 
electrolyte solutions produce electric conductance. According to Maxwell moving 
charges contribute to the propagation coefficient k 

fc = ko[i{u) + ̂ ] (15) 
iu>e0 

In eq.(15) a(u) is the frequency dependent specific conductivity of the solution. 
This consequence of the Maxwell equations shows that permittivity and specific 
conductivity of electrolyte solutions cannot be measured separately. The appropriate 
material constant for electrolyte solutions is the 'generalized' permittivity fj(cj) 

fj(u) = i(u) + ^ - - , V ) = £ V ) - ^ ; I/V) = e"M + ̂  (16a,b,c) 
^£o U>60 U€0 

where 
hm = a'(0) = a; a"(0) = 0 (17a,b) 

The specific conductivity a of the solution at low frequencies is measurable by 
classical methods (Kohlrausch bridge and conductance cell) 

atse^2pk\*kWk\ h = eNAuk (18a,b) 
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In eqs. (18) /?jfc,2fc and A* are the particle density, valency and conductance of the 
ion k; uk is the ionic mobility, ujt = e|2rfcjCjt"1 ? C* ^s the friction factor of the moving 
ion k in the solution; is Avogadro's number and e is the elementary charge. The 
frequency dependence of conductivity is very small (Debye-Falkenhagen effect) and 
can be neglected at high frequencies: a"(u)/u£0 » 0 [8]. The eqs. (16b,c) can be 
reduced to 

v'(u) = £'(u,); = e » + (19a,b) 

2.2 Polar liquids 

Fig. 1 shows the dispersion curve e'(uj) according to eq. (13b), the absorption curve 
e"(u>) according to eq. (13c) and the Argand diagram (Cole-Cole plot) e" vs. e' for 
water at 25 0 C obtained from measurements at 1.8 to 100 GHz [9]. The Argand 
diagram is a semicircle 

[ £'H - ej^\2 + w n ? = i ^ r ^ } 2 (20) 

2 5 10 20 50 100 0 20 40 60 80 

frequency e' K _ 
GHz 

Fig. 1: Dispersion curve (1), absorption curve (2) and Argand diagram (3) of water 
at 25° C in the frequency range 1.8 to 100 GHz. 

Figs. 1 impart the following information : es = £'(0) = 78.4, Coo — £;(oo) = 5.2 
and r — 8.3ps. The relaxation time r is the reciprocal value of the frequency at the 
maximum of e"(u>), at the inflection point of e'(u>), or at the apex of the Argand 
diagram, r = w"^. 
It must be stressed that the information from figs. 1 is an incomplete information 
on the dynamic processes in water and only an approximative information on the 
considered particular molecular reorientation process. The use of Laplace integrals in 
eq. (8), extended from zero to infinity, would require the knowledge of all relaxation 
modes of the liquid or, at least, measurements in a sufficiently wide frequency range 
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to permit extrapolation to these limits. For the problem of incomplete frequency 
coverage the reader is referred to ref. [10]. However, precise measurements in 
restricted frequency ranges may yield satisfacotry information on processes taking 
place at these frequencies. For instance, the extension of measurements on water 
to 1 - 400 GHz does not change the relaxation time of the reorientation time 
r = T\ = 8.3ps, but a second relaxation time T2 is observed at 1 ps due to 
H-bonding; es is slightly changed and £oo is significantly decreased, as could be 
expected since every new process at high frequencies must decrease until its 
value at IR frequencies (EQO = 1.8) is reached. This example shows that further 
dissipative processes at high frequencies must be expected for water. 
The results from measurements of our laboratory on various polar liquids at fre­
quencies from 1 to 90 GHz and the discussion of the underlying molecular modes 
were published recently [11] [12]. A table containing also literature data is given in 
ref. [13]. 
The occurrence of more than one relaxation time in liquids can be analyzed with 
pulse-response functions of the type [7] 

n °° 

/;r = E - e x P ( - - ) o r fpT= / — e x p ( - V (21a,b) 
f^Tj Tj J T T 
J o 

for discrete or continuous distributions of relaxation times, respectively. Only dis­
crete relaxation time distributions will be considered in following discussions yielding 
the frequency dependence of permittivity when N relaxation processes take place 

N 
£{u) = eco + {es-eoo)Y]—^ ; 9j = — — — ; ejoo = eJ+1 (22a,b,c) f-f 1 + ICJTj Es - £oo 3=1 J 

Eqs. (22) produce Argand diagrams with a sequence of semicircles of dispersion 
amplitude (e3 — £ooj)] examples are given in figs. 3. 
For non-hydrogen bonding systems the reorientation of single molecules is respon­
sible for the slow relaxation process [12]; the corresponding dispersion amplitude 
(ej — £joo) is proportional to the particle density p of the relaxing species [14] 

e . _ £ . 3 g J m ) 

£ t £ l c ° - MTe0 2e3 + l ( l - / a ) 2 { Z 6> 

Eq. (23) results from the Kirkwood-Onsager theory of static polarization; g is the 
Kirkwood correlation factor; / is the reaction field factor of the Onsager theory. 
Additional high frequency processes may arise from intramolecular reorientation 
[12]. 
Liquids exhibiting cooperative effects such as hydrogene bonding show rather com­
plex dielectric behavior. Water with two relaxation times was given as an example for 
a liquid producing a three dimensional network. Alcohols producing one-dimensional 
association show three relaxation times [15][11] and so does N-methylformamide [12]. 
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Mixtures of polar compounds produce Argand diagrams with semicircles attribu­
table to their compounds. The variation of dispersion amplitudes and relaxation 
times of the individual relaxation regions with mole fraction are characteristic for 
molecular interactions. Apolar compounds cannot undergo relaxation processes for 
lack of orientable dipoles. In mixtures with polar compounds they diminish the 
dispersion amplitudes of the polar compounds by a volume effect. Examples can be 
found in refs. [9] [16 to 22]. 
Modern kinetic theories use 'longitudinal relaxation rates' ri = e^r/eg [23] [24] 
derived from solvent relaxation times r for the calculation of rate constants of fast 
chemical reactions such as electron transfer reactions in solutions [25 to 28]. 
The role of solvent relaxation times for transport properties will be discussed in the 
following chapter. 

2.3 Electrolyte solutions 

The permittivity diagrams of electrolyte solutions differ from those of polar com­
pounds by the contribution of specific conductivity a to the generalized permittivity. 
However, the measured rj'(u) and T]"(UJ) graphs can easily be reduced to £'(u>) and 
e"(u>) diagrams when they are corrected for the conductance contribution according 
to eqs. (19). Dispersion, absorption and Argand diagrams as obtained after con­
ductance correction will be the subject of the following discussion. For diagrams 
without conductance correction and their discussion, see refs. [10] [29] [30]. 

2.3.1 Dielectric depression by ions 

Freely moving ions without dipole moments in solutions cannot be orientated in 
electric fields. Therefore they cannot produce orientational relaxation times. Ho­
wever, ions change the local-electric field acting on the adjacent solvent molecules 
and diminish the solvent dispersion amplitude significantly stronger than the vo­
lume effect of hard spheres predicts. The static permittivity es(c) of the solvent at 
electrolyte concentration c characteristically decreases with ion size and charge. For 
diagrams of A£ vs. c and the discussion of ion specificity of the dielectric depression 
Ae, A£ = £5(0) - £s(c), see refs. [10] [29] [31]. Dielectric depression is commonly 
presented by the relation 

A £ = 6£ • c - p£cn (n = 3/2 or 2) (24) 

The dielectric decrement Se and the coefficient fis for various electrolyte solutions is 
tabulated in ref. [13]. 
The dielectric depression A£ at electrolyte concentration c, eq. (24), consists of 
three parts 

A£ = A£,0/ + A£so/„ + Aekin (25) 
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where Aevoi is the volume effect which also would be observed when apolar particles 
of equal size are dissolved; Aesoiv is the already mentioned additional effect due to 
irrotationally bounding of solvent molecules in solvation shells, due to ion-solvent 
molecule interaction; Aekin is a kinetic depolarization effect, reducing the mobility of 
the moving ions. The subdivison into partial effects is also possible for the dielectric 
decrement S£ and the coefficient {3£. 

Thermodynamic solvation models estimate the number of irrotationally bound sol­
vent molecules. Pottel et al. [32 to 34], estimate 'effective' volume fractions of 
the solvent and compare them to 'analytical ' volume fractions to obtain solvation 
numbers. Lestrade et al. [35] [36] use the Kirkwood-Frohlich equation to relate the 
calculated dielectric decrement 8£ to its measured value. A critical discussion of 
Pottel's and Lestrade's solvation numbers is given in ref. [31]. 
Conductance theory defines ionic mobilities u,- with the help of friction coefficients 
£*,-, see eq.(18). Ion solvation causes an increase of the radius of the moving ion 
which can be taken into account when expressing the mechanical friction coefficient 
according to Stokes' law with the help of an 'effective' particle radius 

Cat = VVReff (26) 

77 is the viscosity of the solvent in which the spherical particle of radius Reff moves 
under slip (y = 47r) or stick (y — 6TT) conditions. According to Hubbard and Onsager 
[37] [38] the mutual interaction due to the dielectric properties of the solvent and 
ionic mobility is taken into account by an additional dielectric friction coefficient 

The coefficients aj of the series development are given in ref. [39]. Extensions of 
eqs. (27) to the case of solvents with more than one relaxation process and to the 
case of mixed solvents as well as a critical examination of the theory are given by 
Ibuki and Nakahara [40] and Kessler [41]. 
According to the continuum theory of Hubbard and Onsager [37] kinetic polariza­
tion Aekin results from ion migration in an external field E by diminution of the 
orientational polarization of the solvent; Aejt,„ is proportional to specific conduc­
tivity a and a factor depending on the dielectric data £s(0),£oo(0) and r(0) of the 
pure solvent 

^ • F ^ - f » (28) £0es{u) 

p = 2/3 under slip and p = 1 under stick conditions. Improvements of the theory are 
due to Felderhoff [42]; a molecular theory was developed by Hubbard, Colonomos 
and Wolynes [43]. 
The linear relation Ae vs. a is found in many cases; however, the experimental 
slope does not correspond to the theoretically predicted one due to the incomplete 
account of Aeaolv and the neglection of Aevol. The ad hoc combination of 'irrota­
tionally bound' solvent molecules and continuum theory of Aekin permits to bring 
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experimental and theoretical slope to coincidence when solvation numbers are used 
for adaptation, see fig. 2. For further examples, see refs. [30][31] [44]. 

id 

-1 S m 
Fig. 2: Theories of kinetic depolarization [74] 

full points: experimental data Bu 4NCl/CH 3OH (25° C); HO: Hubbard¬
Onsager; HCW: Hubbard, Colonomos, Wolynes; F: Felderhoff; full line: 
combination of kinetic depolarization and solvation model (10 solvent mole­
cules irrotationally bound in solvation shells). 

2.3.2 Influence of ion charges on solvent relaxation times 

The dependence of solvent relaxation times on electrolyte concentration reveals 
characteristic differences between hydrogen bonding and dipolar aprotic solvents, 
cf. ref. [10]. The main (low) relaxation time of dipolar aprotic solvents increases 
monotonically with increasing viscosity at increasing electrolyte concentration, as 
expected from eq. (6). In contrast, the main relaxation time of hydrogen-bonding 
liquids is intimately linked to the structure of the solvent and the nature of solute. 
For instance, the addition of an electrolyte to N-methylformamide may cause a 
monotonously decreasing relaxation time whereas the relaxation time of methanol 
increases slightly and goes through a maximum at increasing salt concentration. In 
H-bonding solvents the long range order through winding hydrogen-bonding chains 
is broken up in the amide, whereas in the alcohol the bulk structure is relatively 
unaffected or even stabilized at low electrolyte concentrations. The fast relaxation 
process in hydrogen-bonding liquids attributed to the dynamics of the hydrogen 
bond is independent of the concentration and nature of all dissolved electrolytes 
studied so far. 

2.3.3 Ion aggregate formation in electrolyte solutions 

Since Bjerrum's pioneering work on the concept of ion-pair formation this problem 
has been extensively studied in the literature. Chemists discuss ion pairs of various 
type in electrolyte solutions, theoreticians accept ion-pair formation as a possibility 
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for the formulation of short-range interactions although they do not need the ion-pair 
concept in their ion-ion correlation functions. 
The chemical model of electrolyte solutions assumes ion-pair formation in solutions 
when after dissolution of an ionophore as solvated ions in a first step, cations Cz+ 

and anions Az~ form paired states of oppositely charged ions 

C # A t l ^ V + C * + + u-A-&[CS.AZL]-t Kas3 = }r (29a,b) 
«2 K2 

The ion pair can be a neutral (UJ+ = u_) or charged (u>+ ̂  u>_) species, ki 
and &2 are the rate constants of ion-pair formation and decomposition; Kass is 
the association constant. A symmetrical electrolyte = u- = 1 ; z+ = \z-\) 
produces only neutral ion pairs with or without inclusion of solvent molecules 
yielding contact ion pairs [Cz+Az~]° and solvent separated ion pairs [CZ+SAZ~]° 
or [CZ+SSAZ~]°. Ionic equilibria in solution are not limited to ion-pair formation. 
Depending on the permittivity of the solvent and the short-range interactions of the 
solutes chemists assume bilateral triple-ion formation [C+A~C+]+ and [A~C+A~]~; 
unilateral triple-ion formation occurs when only the positively or negatively charged 
triple ion is formed. 

Ionogenes, such as an acid AH, which form their ions in solution by chemical 
reactions of the electrolyte and the solvent S produce ion pairs in an ionization 
step prior to dissociation 

AH + S [SH+A-]0 SH+ + A- (30) 

0 20 40 60 80 0 20 40 60 80 

Fig. 3: Argand diagrams showing solvent (left semicircleof each curve) and ion-
aggregate relaxation (right demi-circle) regions of aqueous solutions. 
a : MgSC-4 b: CdCl 2 

(1) pure water; (2) 0.363 M solution; (1) 0.298 M solution, 
(3) 1.10 M solution (2) 1.45 M solution 

Ion aggregate responsible for the relaxation process: 
SSIP: [Mg2+(H20)S02-]° CIP: [Cd2+ CT]+ 
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Table 1: Association and rate constants of ion-pair formation from dielectric relaxation 
data {KA, ki, k2) and literature values K%u- at 25°C. 

KA fci•10~9 k2 •IO"9 

solvent electrolyte IP mol dm 3 dm3 mol - 1 s - 1 s-1 

water Na 2S0 4 SSIP 18±1 4.5t1! 6.5± 0.5 0.37 ± 0.03 
MgS0 4 SSIP 164±25 17 4[2] 1.8± 0.1 0.011± 0.001 
CdCl 2 CIP 105±65 8.3± 1.8 0.097± 0.022 
CdS0 4 SSIP 270±90 245W 2.3± 1.4 0.009± 0.002 

methanol Bu 4NC10 4 CIP 44±17 47.1Í5! a) 
acetonitrile LiBr CIP 148±2 155—193* b) 

Nal CIP 17±6 3.8—24* 8± 1 0.4± 0.1 
NaC104 CIP 31±3 15—27* 10.7± 0.4 0.44± 0.04 
Bu4NBr CIP 17±1 17—22* 8.0± 0.3 0.35± 0.03 

DMF NaC104 SSIP 1.9Í1.3 3.2±0.7̂  4.7± 0.2 1.5± 0.3 
DMSO LiNCS CIP « 3 « I M b) 
* re-analysis of various conductance data from the literature; a) determination of 
rkin not possible; b). rkin > r o r ; [1] R.M.Izatt, D.Eatough, J.J.Christensen, and 
C.H.Bartholomew, J. Chem. Soc. A (1969) 47; [2] H.-J.Wittmann, PhD-Thesis, Regens­
burg 1985; [3] P.J.Reilly and R.H.Stokes, Aust. J. Chem. 23 (1970) 1397; [4] J.Barthel, 
R.Buchner, and H.-J.Wittmann, Z. Phys. Chem. NF 139 (1984) 23; [5] J.Barthel, 
M.Krell, Liberi, and F.Feuerlein, J. Electroanal. Chem. Interfacial Electrochem. 214 
(1986) 485; [6] B.S.Krumgalz and J.Barthel, Z. Phys. Chem. NF 142 (1984) 167; [7] 
J.B.Gill and P.Longdon, personal communication. 

As far as ion aggregates have dipoles, such as the neutral ion pairs [C+A ]°, 
[C+SA-]0, [Cz+SAz-}° etc. or charge bearing ion pairs [C2+A~]+,[C2+S A~]+, 
[C+A2~]~ etc., and their life time is not shorter than the signal time imposed by 
the electromagnetic wave they are orientable in the electric field and reveal their 
proper relaxation processes, see figs. 3. 
The dispersion amplitude of ion-pair relaxation permits the calculation of the ion-
pair concentration cjp = lO~3NApip, see eq. (23), and hence the ion-pair asso­
ciation constant; the dipole moment /i/j>, its polarizability ajp and reaction field 
factor fip can be estimated from appropriate ion-pair models and reveal whether 
the ion pair is a contact ion pair (CIP) or solvent-separated ion pair (SSIP) [13]. 

Generally, the concentration dependence of the ion-pair relaxation time is incom­
patible with theoretical expectations leading to the conclusion that the rotational 
diffusion process of the ion pair is superimposed by a kinetic mode [12] [13] [45] [46]. 
The kinetic process shown by eq. (29a) yields a variation of fijp resulting from the 
changing mutual distance of cation and anion during the ion-pair formation and 
dissociation process. This change is measurable at frequencies where the recipro­
cal kinetic relaxation time ( r * ' 7 1 ) - 1 is of the order of the signal frequency. As an 
example, the symmetrical electrolyte Cz+Az~ produces the kinetic relaxation time 
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[&2 + 2&i(c — cjp)) 1 [47], and the superimposition of the orientational and kinetic 
relaxation times yields the observable relaxation time 

(tip J" 1 = (rip)-1 + k2 + 2*i(c - cjp); /<Ta3a = ^ (31a,b) 

Data analysis according to eqs. (31) yields the quantities ki,k2 and rfp, Kass 

being known from the dispersion amplitude. The case of charged ion pairs of 
unsymmetrical electrolytes can be treated in a similar way. Examples for various 
types of ion aggregation are given in table 1. 
Table 1 contains the association constants KA obtained by extrapolation to infinite 
dilution of the electrolyte, l i m c _ 0 Kass = KA, which may be compared to association 
constants from calorimetric or conductance measurements quoted in the column 
vLit 

A • 

3. The Chemical Models of Electrolyte Solutions 

3.1 Theoretical background 

The knowledge on the structure of electrolyte solutions revealed by high frequency 
permittivity measurements, but also from IR, NMR and Raman spectroscopy, scat­
tering experiments and the almost unlimited information from thermodynamic and 
transport investigations on electrolyte solutions have improved classical electrolyte 
theory and have led to efficient models for the calculation of electrolyte solution pro­
perties, such as the chemical model for dilute electrolyte solutions or MSA (mean 
spherical approach) and HNC (hypernetted chain) models for the more concentrated 
solutions. 
Chemical models are Hamiltonian models at the level of McMillan-Mayer (MM) or 
Born-Oppenheimer (BO) approximations. 
At BO level the solvent is taken into account by the interactions of a solvent molecule 
both with solutes and other solvent molecules. At MM level the solvent is averaged 
out and the properties of the solution are discussed in terms of ion-ion interactions 
in a homogeneous medium representing the solvent. The Debye-Hiickel theory is the 
lowest level of MM approximations. A detailed analysis of the actual state of the 
situation concerning BO and MM level models is given in ref. [48]. In this paper 
only the MM level will be discussed. 
Friedman and Dale [49] showed that the price which must be paid for the trans­
formation of the grand partition function into an effective grand partition function 
only of ion-ion interactions is the non-additivity of the solvent averaged potential 
Uff of the direct pair interactions between ions 

UN(fi...fN) = ^ u t ; ( n , r 2 ) + 5^«;;A(n,f2,f3) + - ( 3 2) 

In eq. (32) is the pair potential of particles i and j, Uijk is the triplet potential 
of i,jrk etc. As a first approximation, the right hand side can be truncated after 
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the first term, neglecting all non-pairwise interactions. This approximation entails 
that the corresponding theories are restricted to dilute or moderately concentrated 
solutions. The common strategy is to produce a tractable relation between the direct 
interaction potentials u,j and the potential of mean force W{j which, in turn, reflects 
the influence of all other ions in the solution on the interaction between the ions i 
and j under consideration. In general this relation is given by the expression 

-rfdWvftA) = J~-I(-^V«W-W»)*---*'s . , 1 ( 3 3a,b) 
J ... J exp(-pUN)dr3...drN kl 

Spherical symmetry permits to write Uij(r), r = \r\ — f ^ l , instead of Uy(fi,f^). The 
use of eqs. (32) and (33) yields the ion-ion pair-correlation functions gij(r) 

gi3(r)=exj>[-pWi,ir)] (34) 

Pair-correlation functions gij(r) are related to the so-called pair-distribution functi­
ons fij(r) by the relationship 

fij(r) = Pipjgij{r) = fji(r) (35) 

Distribution functions. fij(r) indicate the probability of finding two ions i and j 
in the solution at distance r, irrespective of the position of all other ions and the 
velocity of all ions. 

3.2 The chemical model of dilute solutions 

In order to obtain equations for the properties of electrolyte solutions which are 
valid beyond the Debye-Hiickel limiting law at low to moderate concentrations a 
MM model must be used that takes into account both long-range and short-range 
forces around the ions. For this purpose the chemical model of electrolyte solutions 
subdivides the space around an ion into three regions [50 to 53] 
(i) r < a, a being the minimum distance of two oppositely charged ions which is 

assumed to be the sum of effective cation and anion radii, a = a+ + a_. 
(ii) a < r < R, within which a paired state of oppositely charged ions, the 

ion pair [C z +A z _]°, suppresses long-range interactions with other ions in the 
solution. In dilute solutions the occupation of this region by ions of equal 
sign can usually be neglected. 

(iii) r < R, the range of long-range ion-ion interactions. 
The distance parameters a and R are fixed by chemical evidence [53]. 
Table 2 shows the mean force potentials for a dilute solution of a symmetrical 
electrolyte Cz+Az~; W+_ is a step potential which equals zero for r < a and 
r > R characterizing the short-range forces superimposed to the long-range forces 
Wfj around the ions 

Wij{r) = Wfjir) + Wtj (36) 
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Table 2: Mean force potentials W,;(r) of ion-ion interaction in dilute solutions of 
symmetrical electrolytes Cz+Az~ [53] 
K2 = e*lT J2j I03acjz2- Cj : molality of the electrolyte, a: degree of 
dissociation 

Region Mean force potential 

r < a 

a<r <R 

r>R 

oo 

e2Z{Zj 1 e2Z{Zj K 

47T£0£ r 4:7ce0e 1 + KR 13 

e2z{Zj 1 exp[/c(i? — r)] 
47T£0£ r 1 + KR 

The chemical model permits an unambiguous inclusion of the ion-pair concept into 
the theory [52] 

R 

/
W- (r) 

r 2exp[ £i ]<*r ( 3 7) 
a 

For the mean force potential W{j(r) in the region a < r < R see table 2. 
The association constant Kas3 can be subdivided into the thermodynamic equili­
brium constant KA and the activity coefficient y'± of the freely moving ions in the 
solution 

R 

KA = i*NA J r2 e x p [ - ^ - ^ ] ; y'± = e x p [ ^ ^ ] (38a,b) 
a \ 

where — is the Bjerrum parameter 

q + _ = ^!i±£=_ (39) 

From eqs. (38) Bjerrum's associtation constant [54] and its appropriate activity 
coefficient are obtained when setting R = —q^ and W+_ = 0. The assumption 
that a = R in eqs. (38) yields the activity coefficient of the Debye-Huckel theory for 
a completely dissociated electrolyte (KA = 0); a = 0 leads to the activity coefficient 
of the limiting law. 
The mean activity coefficient y± of the electrolyte compound is given in the fra­
mework of the chemical model for completely dissociated symmetrical electrolytes 
(a = 1) or partially associated symmetrical electrolytes (a < 1) by the relation 

y± = av'± (40a) 
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The degree of ion-pair dissociation is calculable from eq. (38a) where 

1 - a 1 
KA = — n 40b 

azc y± 

The knowledge of assciation constant and activity coefficient permits the calculation 
of the thermodynamic properties of electrolyte solutions on the base of chemical 
potentials of the electrolyte compound 

fiE{p,T) = fi%(p,T) + 2RTlnc + 2RTlny± (41) 

The reciprocal process is more commonly used: the calculation of association con­
stants and/or activity coefficients from measured thermodynamic properties. 
Transport equations such as the conductance equation 

A = a[A°° - S{ac)^2 + E{ac)ln(ac) + Ji(R)ac + J2(R)(ctc)^2} (42) 

are also based on chemical models, for details see ref. [55]. In eq. (42) A and 
A°° are the equivalent conductances at concentrations c and at infinite dilution of 
the electrolyte compound; a is given by eq. (40b). The coefficients S and E are 
independent of the distance parameters R; J\ and J2 depend on R. All parameters, 
except S depend on the model underlying a particular conductance theory. The 
reader is referred to refs. [55 to 58] where the coefficients are compiled. 
The completely dissociated electrolyte follows eq. (42) when setting R — a and 
a = 1. The Onsager limiting law of conductance (a = 0) is given by the expression 
[59] 

A = A°° - Syfc (43) 

Equations are given in the literature also for single ion conductances and transference 
numbers [60] [61] at the level of eq. (42). Triple-ion formation is treated at the level of 
eq. (43). This is not a real drawback. Triple-ion formation is always accompanied 
by very strong ion-pair formation permitting the application of limiting laws up 
to moderate electrolyte concentrations since the concentration of free ions remains 
within the validity range of these approximations. 
It is an important and well-proved feature of the chemical model that association 
constants of a given electrolyte solution determined from any thermodynamic or 
transport property are equal and may be used to calculate every other property 
and its temperature or pressure dependence [53]. The equality of association con­
stants obtained by various thermodynamic properties and those from high frequency 
permittivity measurements was stressed in table 1. Valuable information on ion as­
sociation is also obtained from spectroscopic methods [62 to 69], showing that the 
study of dilute solutions is as actual as ever for the provision of information on 
electrolyte solutions. 
Other important fields of application of chemical model calculations for dilute so­
lutions are the study of mixed solvent systems [70], the determination of specific 
solvation, e.g. investigations on ion-solvent complexes [71 to 73], the study of the 
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role of water traces in non-aqueous solutions [74], or the study of bilateral and unila­
teral triple-ion formation [75 to 77]. Such investigations gain increasing importance 
by the need for information on technically used, sometimes rather complex organic 
solvent systems [53]. For transport processes and coupled transport processes in 
electrolyte solutions see ref. [78]. 

4. Integral Equation Methods 

4.1 Theoretical background 

Integral equation methods for the determination of thermodynamic properties are 
exemplified here only for HNC methods [79 to 81] at McMillan-Mayer level. For MSA 
(mean spherical approach) [82], PY (Perkus-Yevik) [83], and combined methods [84 
to 86] the reader is referred to the literature; the extension of integral equation 
methods to time-dependent quantities is given in refs. [87 to 89], extensions to the 
Born-Oppenheimer level can be found in ref. [90]. 
Various statistical thermodynamic equations provide the link between pair-correla­
tion functions gij(r) and direct pair potentials U{j(r) on the one hand and thermo­
dynamic properties on the other hand. 
Examples will be given in the following text on osmotic coefficients <f> based on the 
virial equation [91] 

* " 1 = "67 ̂  W / r^^gij(r)4Tr2dr, = (44a,b) 

Integral equations, in turn, provide the link between direct interaction potentials 
Uij(r) and radial distribution function gij(r) 

9ij(r) = exp[-/?uf>(r) + T t J(r)] (45) 

The function Ty(r) is the difference between the direct pair potential and the mean 
force potential, Ty(r) = /?[utJ(r) - Wt](r)], cf. eq. (34). 
For integral equations the appropriate representation of the pair-correlation functi­
ons is given by the expression 

V2 f r 
9n(r) = — J Y[exp[-Pu1J(r)]dr3...drN- QN = J exp[-0UN]dri...dfN 

(46a,b) 
QN is the configurational integral of classical statistical mechanics. The use of Mayer 
F-functions, ity(r) = exp[-/5utJ(r)] - 1, permits the development of g12(r) in the 
form 

V2 f 
m(r) = ̂  J [1 + FH + £ (FijFjk + FtjFjkFkt) + ...}df3...dfN (47) 

pairs triplets 
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Graph theory [91] offers the possibility to rearrange the infinite sums and products 
of integrals and to reduce them. The remaining integrals can be arranged in few 
well defined classes. In calculations at MM-level U{j(r) is replaced by the mean force 
potential at infininte dilution (/c = 0). The result of such operations yields 

9ij(r) = exP[-0Wtf(r) + T 0(r)] (48a) 

T,;(r) = S*{r) + Bij{r); W*{r) = + W$(r); q i j = — ^ (48b,c,d) 

where Sij(r) is the sum of all series graphs and B{j(r) is the sum of all bridge graphs 
of the cluster development. Graph theroy shows that gij(r) and Sij(r) are related 
via the total correlation functions, hij(r) = gij(r) — 1, and the direct correlation 
functions c,j 

Sij(r) = hij(r) - dj(r); hij{r) = cij(r) + Ylpk
 cik{r)hkj{r)dfk (49a,b) 

it J 

where pk is the density of particles k. Eq. (49b) is the Ornstein-Zernicke equa­
tion. The sum of bridge graphs is generally neglected in integral equation me­
thods, T,j(r) = Sij(r). In eqs. (48a,b) Sij(r) can be considered as an additional 
concentration-dependent term to the direct interaction potential c^(r) taking into 
account the indirect interactions between two particles i and j via all other solute 
particles. 
This outline of the integral equation theory shows that the calculation of the pair-
correlation functions gij(r) via eq. (44a) meets only the short-range potential 
W*. (r) as unknown quantities. Vice versa, from measured thermodynamic properties 
the short-range interaction potentials W*-{r) may be determined as the adaption 
parameters and then yield information on the interactions in the solution. 

4.2 H N C methods and results 

The neglection of the bridge functions in eq. (48a) yields the HNC equation 

gij(r)=exp[-pW*>(r) + Sij(r)] (50) 

which can be solved numerically together with eqs. (49) in an iteration process. 
Convergence problems due to Coulomb interactions must be overcome with the help 
of appropriate changes of the initial HNC algorithm [92]. 
The simplest way to introduce short-range potentials into the theory is the choice of a 
step potentials for ++,+- and interactions [79] [81], thus extending the concept 
of the chemical model at low concentrations, section 3.2, to higher concentrations. 
The comparison, given in fig. 4, of the non-Coulombian step potentials (AG+_ = 
NAW+_\W+_ according to eq. (36)) obtained from low concentration chemical 
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model (IcCM) calculations and H N C calculations using step potentials for the short-
range interactions ( H N C - S P ) shows a strong linear correlation revealing the same 
structural effects [93]. 

- 4 - 2 0 2 4 6 

4G;_(IcCM)  

kJ mol" 1 

Fig . 4: Correlation of the non-Coulombian interaction energies AG*+- from l c C M 
and H N C - S P calculations carried out at equal cut-off distances R + _ for 
every salt [93]. broken lines: methanol solutions; full line: acetonitrile 
solutions; salts (points: methanol solutions, squares: acetonitrile solutions) 
1: N a C l ; 2: NaBr ; 3: N a l ; 4: N a C 1 0 4 ; 5: K I ; 6: R b l ; 7: C s l ; 8: E t 4 N B r ; 
9: B u 4 N B r ; 10: P e n t 4 N B r ; 11: B u 4 N I ; 12: B u 4 N C 1 0 4 ; 13: B u 4 N C l ; 14-
P r 4 N B r 

R+- = a+ + a_ 4- s; a+, a_ : cation and anion radii, s: length of a solvent 
molecule. 

A more elaborated approach is due to Friedman and Rasaiah who subdivide the 
short-range potential into three parts [94] [95] 

WJ- = CORijir) + GURijir) + CAVtJ(r) (51) 

CORl3{r) is a soft repulsive potential, proportional to ( a ,y / r ) n where the ion contact 
parameter ai}- and the exponent n (typical is n = 9) are the potential parameters-
the Guerney sphere contribution, GUR^r) = AtJVmu/Vs, results from the overlap 
of the solvation spheres when two ions have approached to distances less than the 
thickness of their solvation shells. Vs is the molar volume of the pure solvent, 
Vmu is the overlap volume. The Helmholtz energies A f J needed for the exclusion 
of solvent from the solvation shells are the adjustable parameters of the theory. 
CAVtJ(r), proportional to r " 4 , reflects the mutual ion polarization; this effect is 
rather small. Step potentials for W g and continuous potentials according to eq. 
(51) yield equally good reproductions of the thermodynamic properties of electrolyte 
solutions. Fig. 5 shows the pair-correlation functions g++{r), g+_(r) and g—(r) 
of various 0.1 M tetraalkylammonium salt solutions in acetonitrile obtained with 
the help of H N C calculations with continuous short-range potentials as given by 
eq.(51) [96]. Brownian dynamics simulations at MM-leve l using the structure factors 
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from small-angle neutron scattering [97] verify these pair-correlation functions, thus 
showing by an independent method that the neglect of the bridge functions in H N C 
calculations is justifiable [48]. Examples for the successful reproduction of osmotic 
coefficients of non-aqueous electrolyte solutions with the help of H N C calculations 
up to high concentrations and critical remarks on the method can be found in refs. 
[86][93][96][98 to 101]. The use of solution permittivities from MW-measurements 
for the calculation of mean force potentials instead of the permittivities of the pure 
solvents is discussed in ref. [86]. 
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/A 
I If4 

1 
-«++ 
- «+¬
-1— /A 

I If4 

2 
I " / / 3 / / 4 — 

H i u 
<> //A 

0 0.5 1 1-5 2 2.5 
r r 

nm 
Fig . 5: Pair-correlation functions g++(r), g+-(r) and g—(r) from H N C calcula­

tions for 0.1 M acetonitrile solutions of several tetraalkylammonium bro­
mides at 25° C: 1: E t 4 N B r ; 2: P r 4 N B r ; 3: n - B u 4 N B r ; 5: n -Pen t 4 NBr 
[96]. 

5. Concluding remarks 

It is a feature of Hamiltonian models at McMil lan-Mayer level that several models 
reproduce a property of an electrolyte solution equally well. Theory cannot provide 
a criterion for the best model. However, the best model out of a variety of models 
should permit the reproduction of various solution properties with the help of a 
unique set of model parameters which have chemical evidence. This strategy for 
the choice of 'best' models was repeatedly used for electrolyte solutions at low to 
moderate concentrations with the help of chemical models, recent results are also 
available for H N C methods where model parameters were simultaneously fitted; it is 
also the basic concept of the knowledge-based electrolyte data base E L D A R combi­
ning a comprehensive literature and data collection with a method bank containing 
the moduls of about 40 equations of electrolyte solution and solvent properties nee­
ded for the construction of property diagrams for scientific and technical research. 
Valuable information on model parameters is also obtained from F I R , IR and N M R 
measurements, computer simulations and scattering experiments. These methods 
are gaining increasing interest for the provision of fundamental research and tech­
nology with data on the structure and properties of electrolyte solutions. 
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