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Abstract 

In this paper, an efficient artificial neural network (ANN) model using multi-layer 
perceptron (MLP) philosophy has been proposed to predict the fireside corrosion rate of 
super heater tubes in coal fire boiler assembly, using operational data of an Indian 
typical thermal power plant. The input parameters comprise coal chemistry, namely, 
coal ash and sulfur contents, flue gas temperature, SOX concentrations in flue gas, fly 
ash chemistry (wt% Na2O and K2O). An efficient gradient based network training 
algorithm has been employed to minimize the network training errors. Effects of coal 
ash and sulfur contents, wt% of Na2O and K2O in fly ash and operating variables such 
as flue gas temperature and percentage excess air intake for coal combustion on the 
fireside corrosion behavior of super heater boiler tubes have been computationally 
investigated and parametric sensitivity analysis has been undertaken. It has been 
observed that ash and sulfur contents of coal, flue gas temperature and fly ash chemistry 
have a relatively predominant influence on the rate of fireside corrosion with respect to 
other parameters. Quite good agreement between ANN model predictions and the 
measured values of fireside corrosion rate has been observed, which is corroborated by 
the regression fit between these values. 
 
Keywords: Fireside corrosion, superheater tubes, artificial neural network model, coal 
composition, boiler fly ash and flue gas. 

 

 

Introduction 

Fireside corrosion issues have always been a concern for the power generation 
industry, but for the last few decades, when only fossils fuels, particularly coal, 
were used as fuels, it has been aggravated. At the present, due to the introduction 
of  new technologies to improve the efficiency and facilitate CO2 and CO 
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reductions  in power  plants,  fireside  corrosion  of  heat  exchangers  has  
become a major operational and techno - economic issue to the power plant 
industry and  manufacturers. Contaminants, such as alkali, chlorine, and sulfur 
vaporize during gasification and combustion of coal, eventually condense on 
metal surfaces and remove the protective layer from those surfaces by chemical 
reaction, fluxing, or fracture [1]. While the boiler operating conditions are 
important variables, the coal chemistry also plays a vital role in fireside 
corrosion. Impurity constituents of coal (alkali metals and chlorine etc.) are well 
known to accelerate corrosion wastage [2]. High sulfur and chlorine contents in 
the coal have long been recognized as a major cause for boiler tube corrosion on 
both the waterfall and superheater / reheater surfaces. Fig. 1 shows a typical 
schematic of an Indian operating power plant. The effects of other constituents 
on corrosion, such as the alkali and alkaline metal concentrations, as well as the 
total ash content, are also important but less understood. Corrosion mainly 
depends on fuel inorganic chemistry and operating conditions. The chemical 
reaction mechanisms of the inorganic content depend on boiler operating 
conditions. This may lead to different pathways for compounds that initiate or 
accelerate the corrosion process. In pulverized-coal-fired boilers, high-
temperature corrosion due to chlorine and sulphur is potentially troublesome. The 
forms in which chlorine occurs are important, as they determine the mineral 
transformation during combustion, which ultimately affects the  fireside 
corrosion  behavior  of  the  species,  and  their  potential  for  removal  during  
the  fuel preparation, as a remedial measure for fireside problems [3]. It may be 
noted that in Indian coal, the chlorine content is much lesser and consequently its 
influence on fireside corrosion rate is neither alarming nor an operational issue. 
While higher efficiencies and lower emissions can be realized from an existing 
coal combustion system, accelerated fireside corrosion is also expected to occur 
on the boiler tubes. For instance, low-NOX combustion produces H2 S in the flue 
gas and FeS in the deposit, due to incomplete combustion of the sulphur-bearing 
species in coal. Both of these sulfides are known to increase fireside corrosion on 
the waterfalls via sulfidation, although the corrosion mechanisms are distinctly 
different [4].  
The fireside corrosion of various components of a coal-fired boiler may be 
attributed to the following: 
- Reducing (sub-stoichiometric) conditions caused by impingement of 
incompletely combusted coal particles and flames,  
- Accelerated oxidation from overheating,  
- Molten salt or slag-related attack.  
The fireside corrosion is generally localized in regions specifically near the walls 
of the burners. Reducing atmospheric corrosion can result from direct reaction of 
the waterwall tubes with a sub-stoichiometric gaseous environment containing 
sulphur, or with partially combusted char containing FeS. The reducing 
conditions have two major influences on the corrosion process. First, they tend to 
lower the melting point of any deposited slag, increasing its ability to dissolve 
the normal oxide scales, and second, the stable gaseous sulphur compounds 
include H2S, which is more corrosive than SO2 that prevails under oxidizing 
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conditions [5, 6]. The overheating leads to an accelerated oxidation of both the 
fireside and the steam side surfaces of the tubes that produces thickened, hard 
scales. Above 570 °C, a considerable non - protective scale of wustite (FeO) can 
be formed on iron, which culminates in rapid oxidation [7].  

 
Figure 1. Schematics of a coal fired boiler assembly. 

 
 

Mechanisms and causes and of Fireside corrosion  

Fireside corrosion is often a very complicated process. Generally, the same 
corrosion types as those from the steam side can be found in the fireside of a 
tube, but the acid and base corrosion mechanisms are usually defined differently. 
Corrosion  of  super-heaters  has  become  the  limiting  factor  in  the  attempt  of  
increasing  the final steam temperature in energy production. The strength of 
present steels would allow very high steam pressures and temperatures, but the 
high oxidation rate or superheater corrosion caused by contaminants  in  fuel  
limits  the  maximum  allowed  temperature,  especially  in  the combustion  of  
biomass  and  recycled  fuels  [3,4]. Superheater corrosion can take place inside 
the tube, as steam side corrosion, or outside the tube, as fireside corrosion. The 
steam side corrosion is mainly due to faults in the steam quality control, while 
the fireside corrosion is caused by corrosive components present in the flue gas. 
The methods of measuring these two main corrosion types differ remarkably. It is 
seldom possible to measure directly the thickening of the oxide scale inside a 
tube, while a significant material loss on the outside can be detected with smaller 
effort. Further, coal exhibits wide variations in many of its properties, including 
composition. Low-rank coals commonly contain relatively large amounts of 
organically associated elements such as Na, Mg, Ca, K, and Sr, present as salts of 
organic acid groups, as well as mineral grains, although they commonly  contain  
less  chlorine  than  high-rank  coals. The Indian coals in general are low rank 
coals having much less chlorine contents [8].  By contrast, high-rank coals 
commonly contain more iron and sulfur than low-rank coals. When coal particles 
are fired into the boiler furnace, the moisture and the volatile species are driven 
off; the fixed carbon in the pulverized particles begins to burn. The contained 
mineral matter may be melted or vaporized, and is largely oxidized. The sulphur-
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bearing compounds in the coal (such as FeS) are converted to oxides, such as 
Fe2O3, K2O, Na2O, SO2 and SO3. The relative proportions of SO2 and SO3 in the 
flame depend on the oxygen availability and the flame temperature. SO2 is 
thermodynamically favored at higher temperatures; the formation of SO3 can be 
catalyzed by certain metal oxides. Thus, the gaseous species released, as the coal 
passes through the flame, contain potential corrodents such as sulphur, vapor of 
alkali metal salts, and chlorine compounds [9]. For  high-temperature  corrosion 
due  to  sulfur, the  presence of alkali pyrosulfates in furnace wall deposits and 
alkali-iron trisulfates on the leading edge of the final  superheater  tube  surface  
is the  primary cause  for  tube wastage. The  sulfates interact  with Fe2O 3 in  ash 
and  with  SO 3 present at  the  tube surface,  to  form  alkali tri-sulfates.  The 
fireside corrosion rate enhances due to formation and de-stabilization of molten 
complex alkali-iron tri-sulphates, with increasing temperature. Some of the most 
common reactions of forming alkali-iron tri- sulphates are [10]: 
 

 
 

Compounds that have been recognized as having the potential to form in deposits 
and cause fireside corrosion of tube surfaces include the following: sulphate 
deposits; pyro-sulphates, e.g. (Na, K)2S2O7; alkali-iron tri-sulphates, e.g. (Na, 
K)3FeS2(SO4)3; mixed sulphates, e.g. (Na, K, Fe)xSO4; chloride deposits, with 
mixed compositions, including Na, K, Fe, Ca, Mg, and other metal elements 
depending on the fuel used;  and carbonates, with mixed compositions including 
Na, K, Fe, Ca, Mg, and other metal elements depending on the fuel used [11]. 
The quality of coal used is very important. It has been proposed [2] that there are, 
in general, three categories rankings for the corrosiveness of coals, based on the 
sum of the percentages of water-soluble sodium and potassium in the coal, as 
shown in Table 1. 
 

Table 1. Coal corrosiveness classification index. 

Water-soluble Na+K (Wt. %) Corrosiveness 

< 0.5 Low 

0.5-1.0 Medium 

> 1.0 High 

 

Chlorine (more than 0.2 wt%) has been found to promote the release of both Na 
and K into the flame [12], and acts as a strong catalyst for the molten tri-sulphate 
attack. There is also evidence that HCI formed in the flame can destroy the Fe2O3 
layer on a steel surface, thereby exposing it to additional oxidative attack [3, 4]. 
Research on  alkali  tri-sulfates  reveals  that  high-temperature  corrosion  of 
furnace  walls  and  superheater  surfaces  is  minimized  by  maintaining  an  
oxidizing environment  and  avoiding  flame  impingement  on  furnace  walls. 
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Artificial Intelligence applications in corrosion modeling 
Quantitative determination of fireside corrosion rates, in conjunction with 
pertinent mechanisms as a function of boiler coal chemistry, fly ash chemistry 
and operating parameters based on first principle kinetic modeling, has remained 
a fairly difficult topic. This is due to the phenomenological complexity and 
sometimes non-linear relationship between the dependent and independent 
variables of the fireside corrosion phenomenon. Therefore, first principle based 
kinetic model predictions are not always amenable to realistic plant operating 
conditions. Therefore, simplified assumptions are often made to overcome a 
phenomenological complexity, which idealizes realistic problems. Recently, Data 
driven Artificial Intelligence (AI) or Computational Intelligence (CI) based 
techniques are increasingly used with to functionally map, in an accurate way, 
the input-output relationship of complex corrosion processes, although these are 
quite scanty. In principle, AI techniques (such as ANN, Fuzzy logic and Genetic 
algorithms are intelligent information-treatment systems with the characteristics 
of adaptive learning. 
Application of an artificial neural network (ANN) model has been reported for 
data driven modelling for prediction of ash deposition in boiler heat transport 
system [13]. ANN has also been developed successfully to characterize thermal 
behavior of boiler tubes in the presence of fouling on the basis of plant data [14], 
and it has also been reported that such models have been applied to control and 
minimize the effect of fouling in biomass boilers [15]. Application of an expert 
system based theoretical approach for boiler fouling assessment has been 
proposed [16].  A comparative study of Fuzzy logic and ANN has been reported 
[17] for the prediction of the remaining life of boiler tubes subjected to various 
damage mechanisms. An adaptive Neuro-Fuzzy technique has been attempted 
[18] for predicting and characterizing coal slagging in a power plant. However, 
application of ANN modeling to predict the oxidation scale deposition rate in 
boiler operations is relatively scanty in the published literature.  
The objective of the present work is to develop a multi-layer feed forward ANN 
model to predict explicitly the fireside corrosion rate, as a function of measured 
plant data (input/output parameters), namely coal ash and sulfur contents, wt% of 
Na2O and K2O in fly ash, and operating variables such as flue gas temperature 
and percentage excess air intake for coal combustion of a typical coal fired 
Indian operating boiler. The proposed ANN model also attempts to characterize 
effects of some of the operational parameters on the fireside corrosion behavior. 
In this proposed ANN model, efficient gradient based network training algorithm 
and optimized neural network architecture have been incorporated to improve the 
network learning algorithm and to minimize training errors during the network 
learning process.  

 

Adaptive neural networks modeling of fireside corrosion rate 
MLP is the most popular neural network architecture in use today [19, 20]. MLP 
is a network of simple neurons called perceptrons. The perceptron computes a 
single output from multiple real-valued inputs by forming a linear combination 
according to its input weights, and then possibly putting the output through some 
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nonlinear activation. The output from a given neuron is calculated by applying a 
transfer function to a weighted summation of its input to give an output, which 
can serve as input to other neurons. The framework of MLP concept is shown in 
figure 2. Mathematically, this can be given as: 
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where α
jk 

is neuron j’s output from k’s layer and β
jk 

is the bias weight for neuron j 

in layer k. The model fitting parameters w
ijk 

are the connection weights and kf ’s 

are activation functions. Most neural networks will tend to forget old information 
if we attempt to add new information incrementally. When developing an 
artificial neural network to perform a particular pattern-classification operation, 
one typically proceeds by gathering a set of exemplars, or training patterns, then 
using these exemplars to train the system. During the training, information is 
encoded in the system by the adjustment of weight values. Once the training is 
deemed to be adequate, the system is ready to be put into production, and no 
additional weight modification is permitted. This operational scenario is 
acceptable, provided the problem domain has well-defined boundaries and is 
stable. Under such conditions, it is usually possible to define an adequate set of 
training inputs for whatever problem is being solved. 
 
Optimal network learning algorithm 
MLP is usually trained using the error back propagation algorithm. This popular 
algorithm works by iteratively changing a network’s interconnecting weights, 
such that the overall error (i.e. between observed values and modeled network 
outputs) is minimized. In principle, network training/ learning uses one of several 
possible optimization methods to minimize this error term. There are various 
back propagation (BP) algorithms, such as Scaled Conjugate Gradient (SCG), 
Levenberg-Marquardt (LM), Gradient Descent with Momentum (GDM), variable 
learning rate Back propagation (GDA) and Resilient back Propagation (RP) [19]. 
There is a variety of network optimization techniques that uses gradient of a 
function to be optimized. One of the most recently developed efficient versions 
of the quasi-Newton optimization methods is the BFGS algorithm [21, 22], 
which has largely replaced the classical DFP algorithm.  
In general, the quasi-Newton method was derived from quadratic objective 
function. The inverse of the Hessian matrix, H (shown in eqn. 8) is used to bias 
the gradient direction [23, 24]. 

1 HB    (5) 
 

In the quasi-Newton training method, the weights are updated using the 
following iterative procedure: 
 

iiii gBWW 1   (6) 
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The matrix B here needs not be computed. It is successively estimated employing 
rank 1 or rank 2 updates, following each line search in a sequence of search 
directions. This is algorithmically given as follows: 
 

iii BBB   (7) 

In this iterative algorithm, Bi-1 is the previous value of B. 
The two important algorithmic relationships to compute Bi are as follows [24]: 
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The above expression pertains to DFP algorithm and the equation given below is 
the BFGS algorithm: 
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where, 

1 ii wwd   and 

1 iig gg  

                      1 ii BBB             (10) 

Thus, BFGS potentially reduces the number of function evaluations [24, 25] 
required to achieve an optimization procedure which has been successfully 
applied elsewhere by one of the authors [26].  

 
Network configuration Input-Output variables 
The following activation functions, denoted by Φ (v), have been used in this 
neural model. First, there is the Threshold Function which takes on a value of 0, 
if the summed input is less than a certain threshold value of v, and the value of 1, 
if the summed input is greater than or equal to the threshold value [27, 28]. 

 

                      (11) 
Secondly, there is the Piecewise-Linear function. This function again can take on 
the values of 0 or 1, but can also take on values between that, depending on the 
amplification factor in a certain region of linear operation. 

 

                                  (12) 
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Thirdly, there is the sigmoid function. This function can range between 0 and 1, 
but it is also sometimes useful to use the -1 to 1 range. The sigmoid function is 
the hyperbolic tangent function given below [29]: 

 

                        (13) 
 

Table 2. A typical ANN modeling data segment. 

Corrosion_rate flue gas coal_ash  coal_ S Na2O_Ash  K2O _Ash SOX_Flue_gas excess_air

(mm/year) temp oC % % wt (%) Wt(%) (mg/m3) (%)

0.47 178 39.7 0.6 0.35 1.24 237.1 34.7

0.49 178 39.9 0.6 0.35 1.23 237.3 34.9

0.49 176 39.9 0.6 0.35 1.24 237.4 34.9

0.46 175 39.6 0.6 0.35 1.25 236.9 34.6

0.43 175 39.3 0.6 0.34 1.22 236.5 34.3

0.45 175 39.5 0.6 0.34 1.21 236.7 34.5

0.43 175 39.3 0.6 0.34 1.2 236.4 34.3

0.43 175 39.3 0.6 0.34 1.21 236.4 34.3

0.4 175 39 0.6 0.34 1.22 236 34

0.35 172 38.5 0.5 0.33 1.15 235.2 33.5

0.37 171 38.7 0.6 0.34 1.19 235.6 33.7

0.23 168 37.3 0.5 0.32 1.1 233.4 32.3

0.24 168 37.4 0.5 0.32 1.12 233.5 32.4

0.3 166 38 0.5 0.33 1.17 234.5 33

0.2 166 37 0.4 0.32 1.11 233 32

0.23 165 37.3 0.5 0.32 1.09 233.4 32.3

0.13 165 36.3 0.4 0.31 1.06 232 31.3

0.18 165 36.8 0.4 0.32 1.11 232.7 31.8

0.13 164 36.3 0.4 0.31 1.07 231.9 31.3

0.12 164 36.2 0.4 0.31 1.06 231.7 31.2

0.04 163 35.4 0.3 0.3 1.01 230.6 30.4

0.04 160 35.4 0.3 0.3 1 230.6 30.4

 

 
The input, output variables and their data ranges, for a 250 MW typical Indian 
coal fired boiler system used in the ANN models, are shown in Table 2. Table 3 
shows the chemistry of a typical Indian thermal coal used in power plants. Input 
data set is segmented [26,27] into three subsets, namely, one for training 
(learning),one for selection (validation), and one for testing (prediction) using 
roughly 2:1:1 ratio. Out of 1000 dataset from plant measurements, 500 dataset 
are used as training samples, 250 as validation samples and the remaining 250 
samples have been utilized for prediction. The selection basis of these three 
dataset for training, selection, and testing has been random. The current network 
topology is designed with nine input neurons and one output neuron, four and 
thirteen hidden layers (two separate cases) to numerically simulate the fireside 
corrosion process. Sometimes, the pitfall of MLP based network is that too few 
neurons in the hidden layer may introduce higher error during network selection 
in the model, where the relations between different variables are not well 
developed. On the other hand, too many neurons in the hidden layer may cause 
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the model to over-fit the training data, resulting in a less optimal solution for 
selection data. The neural prediction based on two feed forward network 
architectures (MLP 9-4-1 and MLP 9-13-1) is compared with the regression fit 
between predicted and measured fireside corrosion rate data.  It may be observed 
from the simulation results (Fig. 2) that all these two network architectures have 
an almost similar accuracy level. The network architecture nomenclature is as 
follows: MLP 9-4-1 specify a multilayer perceptron network and  the subsequent 
digits indicate the number of input neurons(9), the number of hidden neurons(4) 
and the number of output neurons(1), respectively. 
 

Table 3. Chemical analysis of Indian coal.  

Characteristics Indian 
Total moisture ash  % 10-20 

Ash  % 25-50 
Volatile matter % 16-30 
Fixed carbon  % 24-40 

Carbon  % 30-55 
Hydrogen % 2-4 
Nitrogen  % 0.7-1.15 
Sulphur  % 0.3-0.8 
Oxygen  % 4-8 

GCV(kcal/kg) 2800-5000 
Abrasive index 40-60 

Ash softening temperature Above 1300 oC 
Hard groove index (HGI) 50-110 

 

 
Figure 2. Neural network simulation architecture. 

 

Results and discussion  
Fig. 3 depicts numerical predictions of fireside corrosion rates on boiler 
superheater tubes (in a typical Indian power plant). The neural prediction based 
on two network architectures (MLP 9-4-1 and MLP 9-13-1) is compared with the 
regression fit between predicted and measured data.  It may be observed from the 
simulation that all these two proposed network architectures have almost similar 
prediction characteristics.  
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Figure 3. Validation of neural prediction with measured data. 

 

Fig. 4 shows predicted fireside corrosion rate as a function of sulphur content in a 
typical thermal Indian coal.  It may be observed from the figure that the fireside 
corrosion rate monotonically increases with an increased sulphur content in coal. 
The corrosion rate varies from 0.1 to 1.0 mm/year (approx.) with respect to 
sulphur content of coal ranging from 0.3% – 1.0% .There is comparatively less 
sulfur content present in Indian coal as compared to British coal. However, the 
sulphur content is sufficient to the extent it ensures that any sodium and 
potassium compounds released in the combustion process form fusible sulfates. 
Sulfur typically is found as sodium sulfate in coal ash. At high temperature it 
dissociates [12] and eventually alters the basicity of the molten ash deposits. 
Sulfur reacts with sodium in the melt altering the concentration of Na2O, and 
thereby changing the corrosion rates.   
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Figure 4. Prediction of fireside corrosion rate with sulphur content in coal. 

 
Fig. 5 shows predicted fireside corrosion rates as a function of SOX in flue gas. It 
may be observed from the figure that the corrosion rate linearly increases with 
increased SOX percentage in flue gas. The predictions conform to the realistic 
situation [30].  The corrosion rate varies from 0.1 – 0.95 mm/year (approx.) with 
respect to SOX concentrations of 230 -245 mg/m3 in flue gas. Fireside corrosion 
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in boiler areas is associated with the deposition of alkali sulfates onto the metal 
surface, their concentration being increased at the metal surface by absorption 
onto the porous fly ash. The salts formed are usually molten and contain free 
sulfur trioxide in flue gas, which dissolves the protective oxide film to form iron 
and chromium based sulfates.  
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Figure 5. Prediction of fireside corrosion rate with SOx content in flue gas. 
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Figure 6. Prediction of fireside corrosion rate with ash content in coal. 

 
Fig. 6 shows predicted fireside corrosion rates as a function of ash content in a 
typical Indian coal. It may be observed from the figure that the fireside corrosion 
rate enhances with an increased value of ash content in the coal. The fireside 
corrosion rates varies from 0.05 to 0.97mm/year (approx.) with respect to an ash 
content range 35% - 45% in the coal. With an increase in the ash content in coal 
the mineral matter content in coal also increases accordingly. The mineral matter 
main constituents are alkali metal oxides (sodium and potassium compounds 
primarily). These alkali metal forms oxides at high temperatures and has low 
melting point ranges from 540 to 750 oC. These oxides fuse with the sulphur 
compounds and form highly corrosive alkali metal sulphates deposits on to the 
heat transport surfaces, accelerating corrosion.  Fig. 7 depicts variation of 
predicted corrosion rates as a function of flue gas temperature. It may be 
observed from the figure that the corrosion rate enhances with an increase in flue 
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gas temperature. Corrosion reactions get activated with higher activation energy 
as the flue gas temperature increases [10, 31].   
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Figure 7. Prediction of fireside corrosion rate with exhaust flue gas temperature.  
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Figure 8. Prediction of fireside corrosion rate with excess intake air. 

 
Fig. 8 depicts variation of predicted corrosion rate with the excess air in the 
furnace. It may be observed from the figure that the corrosion rate increases 
monotonically with an increased value of excess intake air percentage in the 
furnace. The sulfur in coal reacts with oxygen in the combustion air forming SO2, 
and, if the residence time and O2 content are more than sufficient, it forms also 
SO3. The initial sulfidation reaction seldom continues so as to result in internal 
sulfidation of the metal.  
Fig. 9 and Fig. 10 depict variation of the predicted corrosion rate with the wt% of 
Na2Oand K2O in fly ash. It may be observed from the figure that the corrosion 
rate enhances with increased wt% of Na2O and K2O in fly ash. The corrosion rate 
varies from 0.01 to 0.94 mm/year (approx.) with respect to 0.3-0.4 and 1.0-1.5 
wt% of Na2O and K2O in fly ash, respectively. The severe fireside corrosion of 
tube materials is caused by condensation/accumulation of low melting-point salts 
from the flue gas onto the tube surface since salts containing chlorides and 
sulphates of sodium and potassium, easily liquefying at the operating metal 
temperatures [16, 32]. Reaction of alkali sulphates (Na2SO4, K2SO4) with Fe-
oxides (deriving from oxide scales or ashes) in the presence of SO3 will result in 
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the formation of alkali-iron trisulphates (Na, K)3Fe(SO4)3, held responsible for 
the degradation of coal-fired plant  superheater tubes[15]. 
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Figure 9. Prediction of fireside corrosion rate with Na2O content in ash. 
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Figure 10. Prediction of fireside corrosion rate with K2O content in ash. 

 
 

3D Visualization of fireside corrosion rate as function of ash
and sulphur contents of coal.
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Figure 11. Variation of corrosion rates with coal ash and sulphur contents. 

 
Fig. 11 shows a 3-D visualization of variation on predicted fireside corrosion 
rates as a function of coal ash and sulphur concentrations. It may be observed 
that the corrosion rate surface in 3-D framework depicting the variation of coal 
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ash and sulphur content has a peak value which corresponds to a higher level of 
ash and sulphur content of coal.  
 
 

3D Visualization of fireside corrosion rate as function of

flue gas temperature and furnaces excess air
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Figure 12. Variation of corrosion rates with excess air intake and flue gas temperature. 

 
 

3D Visualization of fireside corrosion rate as function of
sulphur content in coal and SOX in flue gas
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Figure 13. Variation of corrosion rates with coal sulphur content and SOX concentration 

in flue gas. 
 

Fig. 12 shows 3-D visualization of the fireside corrosion rate as a function of 
operational parameters, namely, excess air intake and flue gas temperature. It 
may be observed that the corrosion rate surface in 3-D framework depicting the 
variation of excess air and flue gas temperature has a peak value corresponding 
to a very high level of excess air and elevated flue gas temperature. Fig. 13 
shows 3-D visualization of the fireside corrosion rate as a function of coal 
sulphur concentrations and SOX concentrations in flue gas. It may be observed 
that the corrosion rate surface in 3-D framework depicting the variation of 
corrosion rate with coal sulphur content and SOX concentrations in flue gas has a 
peak value corresponding to high level of coal sulphur content and SOX 
concentrations in flue gas. Fig. 14 depicts the training and testing error 
generation as a function of training cycles during computation. It may   be 
observed from this figure that the absolute error drops sharply from 0.06 to 0.01 
at the very early stage of training (few cycles) and, subsequently, the training and 
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testing errors asymptotically reduces to almost zero, with further increase in the 
number of cycles. It may be further noted that the error bounds in the measured 
data and neural computation are quiet small. Although several simulation results 
have been generated, however, only limited results are discussed in this paper. 
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Figure 14. Training and testing error convergence as a function of training cycles. 

 
 
Conclusions 
The proposed neural network model provides a reasonably accurate predictive 
framework and compares extremely well with the plant and experimental data. 
The ANN methodology  shows good potential for predictions of the fireside 
corrosion rate  as a function of input variables, namely, coal  ash and sulfur 
contents, wt% of Na2O and K2O in fly ash and operating variables such as flue 
gas temperature and percentage excess air intake during combustion.  This model 
has a relative advantage over other phenomenological and semi empirical models 
treating polluted data or data with complex functional dependence. Effects of 
coal composition and fly ash constituents and process parameters on the fireside 
corrosion rate have been investigated, and appropriately validated with the 
measured data. In the numerical domain, it has been found that the efficient 
gradient based network training algorithm does not require computation of 
numerically cumbersome Hessian matrix, or calculation of any matrix inverses. 
This algorithm potentially reduces the number of functions, facilitating faster 
convergence of training errors within a few cycles, with respect to fireside 
corrosion rate prediction.  
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