ON THE STUDY OF CATALYTIC SULPHUR ADLAYERS TO THE OXIDATION

OF SO₂ AT POLYORIENTED PLATINUM ELECTRODES

C. Quijada, J.L. Vázquez and A. Aldaz

Departament de Química Física, Universitat d'Alacant. A partat 99, 03080 Alacant

(Spain)

1. Introduction

Over the last years a number of papers have been published which deal with the electrochemical behaviour of dissolved sulphur dioxide (or related sulphur-oxygen compounds) using platinum as electrode material [1, 2, 3].

The study of sulphur adlayers originated upon reduction of adsorbed SO_2 on Pt has also attracted large interest [4, 5, 6] owing to the influence of such an adsorbate in the course of many electrochemical reactions, like oxidation of small organic molecules [7, 8] and reduction of nitric oxide [9]. Likewise, the catalytic effect of sulphur adlayers on the oxidation of SO_2 is well established [3, 10].

The aim of this paper is to gain further insight into the properties of sulphur adlayers generated form SO_2 and to correlate these properties to the catalytic capability of the adlayer towards the SO_2 oxidation reaction on Pt.

2. Experimental

The electrochemical behaviour of sulphur adlayers was studied by means of cyclic voltammetry. The experimental set-up for cyclic voltammetry consisted of a standard three-electrode potentiostatic assembly described elsewhere [11]. The working electrode was a bead-shaped polyoriented Pt single crystal and the counter-electrode was a coiled polycrystalline Pt wire. All potentials are given with reference to the reversible hydrogen

Portugaliæ Electrochimica Acta, 13 (1995) 371-375

scale. Cyclic voltammograms were recorded at room temperature and at a sweep rate of 50 mV·cm⁻¹.

The test solution (10 % vol./vol. H_2SO_4) was prepared from ultrapure water (Millipore Milli-Q) and suprapur sulphuric acid (Merck). Sulphur adlayers were generated by reduction of irreversibly adsorbed SO₂ or after a single voltammetric sweep (at 50 mV·cm⁻¹) from 0.65 V to 0.2 V in a 0.1 M SO₂ + 10 % H₂SO₄ solution [10, 11]. Distinct sulphur coverages were obtained by varying SO₂ concentration or by partial oxidative desorption of a thicker layer. The preparation of sulphur dioxide solutions has been described earlier [11]. The voltammetric behaviour of adsorbed sulphur was studied in an SO₂-free test solution.

3. Theoretical considerations

The so-called number of electrons per site (*eps*) involved in the oxidation of an adsorbate can constitute a useful indication about the average surface distribution of the adatom. *Eps* of adsorbed sulphur on Pt can be determined from the existing linear relatioship between the overall oxidation charge of sulphur and the fractional coverage, θ_s (expressed as the fraction of Pt sites blocked by sulphur):

$$Q_{ox}^{S} = n_{S} eps e_{0} = Q_{H}^{0} eps \theta_{S}$$
(1)

where n_s is the number of Pt sites blocked by sulphur adatoms, e_0 is the electron charge and Q_H^0 is the charge classically associated with the formation of a monolayer of adsorbed hydrogen (210 μ C·cm⁻²).

Sulphur oxidation charges were computed for different surface coverages by following the methodology suggested by earlier authors [4, 5].

4. Results and discussion

Figure 1 shows the voltammetric behaviour of a sulphur adlayer when the platinum electrode is subjected to potential excursions up to 1.50 V. The adlayer was formed during a single negative sweep from 0.65 V to 0.20 V in a 0.1 M SO₂ sulphuric acid solution. The resulting sulphur adlayer imparts a near-to-maximum catalytic activity towards oxidation of dissolved SO₂ [10]. The layer exhibits all the voltammetric properties frequently attributed to adsorbed sulphur [4, 5, 11]: gradual oxidative desorption with competitive oxygen adsorption and the occurrence of a additional reduction process in the so-called hydrogen adsorption region (satisfactorily accounted for the reduction of an S-O-like adsorbed intermediate formed during the oxidation of sulphur). Sulphur layers originated from reduction of irreversibly adsorbed SO₂ display the same voltammetric features [11], but improve the electrocatalysis of SO₂ oxidation to a lesser extent [10]. At first glance, it appears that the difference between both types of sulphur layers is merely quantitative. Nevertheless, the profile of the plot $Q_{ox}^{s} = f(\theta_{s})$ reveals the existence of qualitative divergences (fig. 2).

In fig. 2, the presence of a linear relationship between Q_{ox}^{s} and θ_{s} becomes evident in the range $0 < \theta_{s} < 0.9$, in close agreement with Contractor and co-workers [5, 8]. The slope of the linear plot amounts to 620 µC·cm⁻², which nearly corresponds to an *eps* of 3. This implicates an average surface distribution with each sulphur adatom occupying two Pt sites (*i.e.*, bridge-bound sulphur), assuming that sulphur desorbs in a six-electron process to yield sulphate or bisulphate. Contractor *et al.* reported an *eps* of 3.8, which was interpreted assuming an heterogeneous adlayer with 70 % of the occupied sites involving two-site adsorption and the remaining 30 % involving one-site adsorption of sulphur. The different surface structure of the electrode materials employed can account for the encountered discrepancies. Contractor et al. utilized a platinized Pt electrode, with a rough and heterogeneous surface, composed of randomly oriented crystallites. In contrast, we used a smooth polyoriented Pt single crystal, which shows higher surface homogeneity.

At coverages above 0.9, the sulphur oxidation charge is higher than that expected for a full monolayer of doubly bonded sulphur and it no longer lies along the straigth line. According to Contractor's view, high charge densities observed at $\theta_s > 0.9$ may be satisfactorily explained by the deposition of additional sulphur atoms on top of the first layer, this is, by the build-up of a sulphur bilayer, which is not yet complete under the adsorption conditions of fig. 1.

5. Concluding remarks

In the range $0 < \theta_s < 0.9$, adsorbed sulphur lies on a Pt surface in such a way that each sulphur atom occupies two adsorption sites, and a linear relationship is found in the plot Q_{ox}^s vs. θ_s . This distribution may reflect that of the SO₂ layer from which sulphur is derived. At higher coverages, $\theta_s > 0.9$, the linearity breaks down and the formation of second sulphur layer - yet incomplete in the example shown herein - upon the first monolayer is adduced to explain this fact.

A full monolayer of bridge-bonded sulphur presents a relatively poor catalytic effect on the oxidation of SO2 at Pt. A complete bilayer would also be detrimental to catalysis [10]. Only an incomplete sulphur bilayer seems to exhibit good catalytic performance. The special properties of such a sulphur deposit cannot be inferred from voltammetric measurements.

Fig. 1 Oxidation of a sulphur part-bilayer Fig. 2 Plot of Q_{ox}^s versus θ_s . Adlayer formed during potentials excursions up to 1.5 V. The from reduction of irreversibly adsorbed SO: arrows indicate the evolution of the various (□) 10⁻⁴ M; (■) 10⁻² M; (O) 0.1 M; (●) 1 M. voltammetric features.

Sulphur adlayer shown in fig. 1 (A).

References

[1]. E.T. Seo and D.T. Sawyer; Electrochim. Acta, 10 (1965) 239.

[2]. C. Audrey and M. Voinov; Electrochim. Acta, 25 (1980) 299.

[3]. R.M. Spotnitz, J.A. Colucci and S.H. Langer; Electrochim. Acta, 28 (1983) 1053.

[4]. T. Loučka; J. Electroanal. Chem., 31 (1971) 319.

[5]. A.Q. Contractor and H. Lal, J. Electroanal. Chem., 93 (1978) 99.

[6]. M. Szklarczyk, A. Cerwiński and J. Sobkowski; J. Electroanal. Chem., 132 (1982) 263.

- [7]. T. Loučka, J. Electroanal. Chem, 36 (1972) 355.
- [8]. R. Jarayam, A.Q. Contractor and H. Lal; J. Electroanal. Chem, 87 (1978) 225.
- [9]. M.J. Foral and S.H. Langer; Electrochim. Acta, 33 (1988) 257.
- [10]. C. Quijada, A. Rodes, J.L. Vázquez, J.M. Pérez and A. Aldaz; J. Electroanal. Chem., in press.
- [11]. C. Quijada, A. Rodes, J.L. Vázquez, J.M. Pérez and A. Aldaz; J. Electroanal. Chem., 394 (1995) 217.

- 375 -